
Attention-Based Spatial Interpolation for House Price Prediction
Darniton Viana
dav2@cin.ufpe.br

Centro de Informática
Universidade Federal de Pernambuco

Recife, Brazil

Luciano Barbosa
luciano@cin.ufpe.br
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brazil

ABSTRACT
Estimating the market price of a house is important for many busi-
nesses such as real estate and mortgage lending companies. The
price of a house depends not only on its structural features (e.g. area
and number of bedrooms) but also on the spatial context where it is
located. In this work we estimate the price of a house based solely
on its structural features and the characteristics and price of its
neighbors. For that, we propose a hybrid attention mechanism that
weights neighbors based on their similarity to the house in terms
of structural features and geographic location. For the structural
features, we apply an euclidean-based attention and, for the geo-
graphic location, we propose an attention layer based on a radial
basis function kernel. Those attention mechanisms are then used
by a neural network regressor to predict the price of a house and to
generate a vector representation of the house based on its implicit
context: the house embedding, which can be used as a feature set
by any regressor to perform house price prediction. We have per-
formed an extensive experimental evaluation on real-world datasets
that shows that: (1) regressors using house embedding obtained
the best results on all 4 datasets, outperforming baseline models;
(2) the learned house embedding improves the performance of the
evaluated regressors in almost all scenarios in comparison to raw
features; and (3) simple regressor models such as Linear Regres-
sion using house embedding achieved comparable results to more
competitive algorithms (e.g. Random Forest and Xgboost).
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1 INTRODUCTION
E-commerce websites have started to offer price prediction tools
to their customers (buyers or sellers) to help them in their process
of decision making. This feature is particularly useful to sellers
for offer price suggestion and to buyers to compare the price of a
selling product to its estimated value. Kelley Blue Book1 website
provides such feature with its Price Advisor tool that estimates the
market value of cars. The traveling website Kayak2 also offers some
kind of price prediction by suggesting to users to book a flight or
wait based on its forecast price model. In the real estate domain,
the website Zillow3 provides to its users predictions of the market
value of houses. To improve the accuracy of its prediction model,
they launched in 2017 a 1-million prize competition on Kaggle4.
This shows the importance of this feature for their business and
how challenging it is to perform such task. In this work, we are
particularly interested in the problem of house value prediction due
to the high value of this asset for people’s life and its importance
to different businesses such as real estate and mortgage lending
companies.

Many factors are relevant to accurately predict the value of a
house. The structural features of a house (e.g., number of bedrooms
and area) have certainly high influence on its price. The spatial
context where the house is located is another valuable factor for
price prediction. Houses close to subway stations and parks may
have higher values than the ones that do not have such points of
interest in their neighborhood. Previous approaches [3, 15, 22, 29]
have tried to explicitly capture the spatial context of a house for
price prediction by collecting satellite images, points of interest,
census and criminality data of its neighborhood or external images
of the house. Another way to obtain the spatial context of a house
is implicitly by looking at the price of nearby houses: houses with
similar structural features and geographically close tend to have
similar values.

Since collecting and processing data to explicitly capture the spa-
tial context can be very costly, in this work, we aim to estimate the
value of a house based solely on its structural features and charac-
teristics and price of neighboring houses. Wemodel therefore house
price prediction as a spatial interpolation problem [19], whose main
assumption is that spatially distributed objects are spatially corre-
lated. Traditional interpolation models, such as Inverse Distance
Weighting [25], Radial Basis Function [8], and Kriging [17], try to
do this by simply weighting the influence of neighboring points
based on some pre-defined measures (e.g. inverse distance or spatial
variance). Since calculating the neighboring points can have a high

1www.kbb.com
2www.kayak.com
3www.zillow.com
4https://www.kaggle.com/c/zillow-prize-1/
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computational cost on large datasets, data structures such as k-d
tree [2], and uniform grid [18] have been proposed to speed up this
process.

In this work, we introduce a novel spatial interpolation method
based on the attention mechanism 5 [1] that, as opposed to the tra-
ditional spatial interpolation approaches, weights the neighbor’s
influence based on supervised learning. More specifically, we pro-
pose an euclidean-based attention layer to weight the neighboring
houses based on the similarity of their structural features to the
targeting house; and a spatial kernel-based attention layer based on
a Radial Basis Function, which we called Geo Attention, to weight
neighbors based on their geographic distance to the targeting house.
The vectors created by the attention layers added to the geo location
and structural features of the house are fed into a fully-connected
network which produces a vector to the regression layer (a sin-
gle neuron with an activation function) to perform house price
prediction. This vector, which we call house embedding, embeds
the house’s attributes and its spatial context into a common sub-
space. Our proposed network is therefore a fixed feature extractor
for the structural features of houses and their spatial context. As
a result, the house embedding can be used as input feature set by
any regressor to estimate the price of a house.

We have performed an extensive experimental evaluation on
4 datasets. The results show that: (1) the evaluated regressors us-
ing house embedding obtained the best results on all 4 datasets,
outperforming traditional spatial interpolators and previous deep
learning approaches of house price prediction that extract features
from images to capture the spatial context, which is very costly, as
opposed to our approach that only relies on information of neigh-
boring house such as their price, structural features and geographic
location to perform this task; (2) the learned house embedding im-
proves the performance of the evaluated regressors in almost all
scenarios in comparison to raw features; and (3) simple regressor
models such as Linear Regression using house embedding achieved
better or comparable results to more competitive algorithms, such
as Random Forest and Xgboost.

The remainder of this paper is organized as follows. In Section
2, we define the problem we are dealing with in this work. Section
3 presents in details our proposed attention network. We describe
and analyze the data used in our evaluation in Section 4. The ex-
perimental evaluation is presented in Section 5. Finally, we discuss
some previous approaches to the problem of house price estima-
tion in Section 6 and conclude in Section 7, wherein we outline
directions and future work.

2 PROBLEM DEFINITION
Let A𝑖 = {𝑎𝑖,1, 𝑎𝑖,2, · · · , 𝑎𝑖,𝑇 } ∈ 𝑅𝑇 be the 𝑇 structural features of
a house 𝑖; G𝑖 = {𝑙𝑎𝑡𝑖 , 𝑙𝑛𝑔𝑖 } ∈ 𝑅2, the geographic coordinates (lati-
tude and longitude) of 𝑖; C𝑖 = { (A,G)𝑖,1, (A,G)𝑖,2, · · · , (A,G)𝑖,𝑛} ∈
𝑅𝑛×(𝑇+2) the structural and geographic features of the 𝑛 geograph-
ically nearest houses of 𝑖 , where (A,G)𝑖,𝑘 represents the structural
features (𝐴𝑖,𝑘 ) and geographic coordinates (G𝑖,𝑘 ) of the k-th neigh-
bor of house 𝑖; and Y𝑖 = {y𝑖,1, y𝑖,2, y𝑖,3, · · · , y𝑖,𝑛} ∈ 𝑅𝑛 the prices of
the 𝑛 geographically nearest houses of 𝑖 , where 𝑦𝑖,𝑘 is the price of
the k-th neighbor of house 𝑖 ,

5https://github.com/darniton/ASI

Definition 1 (Problem Definition). Given (A,G)i: the structural
features (𝐴𝑖 ) and geographic coordinates (𝐺𝑖 ) of a house 𝑖; C𝑖 : the
features of the n-nearest neighbors of house 𝑖; and Y𝑖 : the prices of
the n-nearest neighbors of house 𝑖 , we aim to estimate the price of
𝑖: 𝑦𝑖 ∈ 𝑅.

3 ATTENTION-BASED NETWORK
In this work, we model house price estimation as a spatial interpo-
lation problem [26]. The main assumption of spatial interpolation
is that spatially distributed objects are spatially correlated. In our
context, we assume that houses with similar structural attributes
and geographically close tend to have similar prices. Based on that,
to estimate the value of a house our solution relies on the price
and characteristics of the houses in its vicinity. Figure 1 presents
the hybrid attention-based network that we propose in this work.
The input of the network are the attributes of the house 𝑖 that
we aim to estimate the price, composed of its structural features
(A𝑖 ) and geographic coordinates (G𝑖 ), and the structural and ge-
ographic attributes of the n-nearest houses (C𝑖 ). The euclidean
attention weights the influence of the structural features of neigh-
boring houses based on the euclidean distance between them and
A𝑖 ; and the geographical attention (Geo Attention) learns the spa-
tial correlations between the n-nearest geographic neighbors of
the house 𝑖 , implemented through a spatial kernel-based attention.
The output vectors of the two attention layers (𝑣𝑒𝑢𝑐 and 𝑣𝑔𝑒𝑜 ) are
concatenated with A𝑖 and G𝑖 and fed into a fully-connected neural
network (hidden layers), which provides the input to the regression
layer (a single neuron with an activation function). The output of
the hidden layers embeds the influence of neighbors and the house
information on the house’s price into a single vector: the house
embedding. In the remaining of this section, we give further details
about the attention mechanisms used by the network.

3.1 Euclidean Attention
One of our main assumptions in this work is that houses in a same
or related region with similar profiles tend to have similar prices.
The euclidean attention tries to model that by weighting the houses
in the vicinity based on their structural features. That is, nearby
houses with similar profile to the targeting house might have high
influence in estimating its price.

As depicted in Figure 1, the inputs to the euclidean attention
are the structural features of the house 𝑖: 𝐴𝑖 , and the structural
features of the n closest houses to 𝑖: S = {𝐴𝑖,1, 𝐴𝑖,2, · · · , 𝐴𝑖,𝑛}. The
score between the structural features of a house 𝐴𝑖, 𝑗 ∈ 𝑆 and 𝐴𝑖 is
the euclidean distance between them:

𝑑 (𝐴𝑖 , 𝐴𝑖,𝑗 ) =

√√√ 𝑇∑
𝑝=1

(
𝑎𝑖,𝑝 − 𝑎 (𝑖,𝑗 ),𝑝

)2 (1)

where 𝑎𝑖,𝑝 is the p-th structural attribute of 𝐴𝑖 and 𝑎 (𝑖, 𝑗)𝑝 is the
p-th structural feature of 𝐴𝑖, 𝑗 .

To calculate the attention weights for each neighbor 𝑗 based
on their structural features, first the model feeds the input vector
𝐷 ∈ 𝑅𝑛 , which contains the eucledian distances between 𝐴𝑖 and its
neighbors 𝑆 , to a fully-connected layer to obtain 𝐻 ∈ 𝑅𝑛 , a hidden
representation of 𝐷 :



Attention-Based Spatial Interpolation for House Price Prediction Woodstock ’18, June 03–05, 2018, Woodstock, NY

𝐻 =𝑊 .𝐷 + 𝑏 (2)

where𝑊 ∈ 𝑅𝑛×𝑛 is a matrix with weights learned during training
and 𝑏 the bias factors. A softmax layer is then applied on 𝐻 to
produce the normalized attention weight of each neighbor 𝑗 :

𝑎𝑠𝑡𝑟 (𝐴𝑖 , 𝐴𝑖,𝑗 ) =
𝑒𝑥𝑝 (𝐻 𝑗 )∑𝑛

𝑗′=1 𝑒𝑥𝑝 (𝐻 𝑗′ )
(3)

Finally, the euclidean-attention layer computes the attention
vector 𝑣𝑒𝑢𝑐 (𝐴𝑖 ) ∈ 𝑅𝑇+1:

𝑣𝑒𝑢𝑐 (𝐴𝑖 ) =
𝑛∑
𝑗=1

𝑎𝑠𝑡𝑟 (𝐴𝑖 , 𝐴𝑖,𝑗 ) [𝐴𝑖,𝑗 ⊕ 𝑦𝑖,𝑗 ] (4)

where𝑦𝑖, 𝑗 is the price of the neighbor 𝑗 of house 𝑖 and ⊕ the concate-
nation operator. The dimension of 𝑣𝑒𝑢𝑐 (𝐴𝑖 ) is𝑇 + 1 since 𝐴𝑖, 𝑗 ∈ 𝑅𝑇

and 𝑦𝑖, 𝑗 ∈ 𝑅1. As Equation 4 shows, 𝑣𝑒𝑢𝑐 (𝐴𝑖 ) is calculated by first
multiplying the vector [𝐴𝑖, 𝑗 ⊕ 𝑦𝑖, 𝑗 ] of each neighbor 𝑗 of house
𝑖 by its corresponding attention weight 𝑎𝑠𝑡𝑟 (𝐴𝑖 , 𝐴𝑖, 𝑗 ), producing
a weighted vector for each neighbor 𝑗 , and then performing an
element-wise sum on these weighted vectors over all 𝑛 neighbors
of 𝑖 . The elements of 𝑣𝑒𝑢𝑐 (𝐴𝑖 ) are therefore the weighted sum of
each structural feature and price of the neighbors of house 𝑖 , where
the attention weights are learned during training.

3.2 Geo Attention
Taking into consideration the structural features of nearby houses
is important for house price prediction but, based on the spatial
interpolation assumption, closer houses in the neighborhood, even
with a different profile, tend to have more influence in the price of
a house than distant ones.

Based on this observation, we propose an attention mechanism
that weights neighbors based on their geographic distance to the
targeting house, which we called geographic attention or simply
Geo Attention. This attention mechanism is very related to tra-
ditional spatial interpolation methods such as Inverse Distance
Weighting [25] and Radial Basis Functions [8], which also weight
neighbors based on geographic distance. But different from them,
our attention layer learns, using supervised learning, weights based
on a kernel function that determines the spatial influence of the
neighboring houses for price prediction. More specifically, as pre-
sented in Figure 1, Geo Attention receives as inputs the geographic
coordinates (𝐺𝑖 ) of the house 𝑖 and the geographic coordinates of
its neighboring houses: 𝑃 = {𝐺𝑖,1, 𝐺𝑖,2, · · · , 𝐺𝑖,𝑛}. The geographic
score between 𝐺𝑖 and an element 𝐺𝑖, 𝑗 ∈ 𝑃 is computed using the
Gaussian kernel function [29]:

𝑠 (𝐺𝑖 ,𝐺𝑖,𝑗 ) = 𝑒𝑥𝑝

(
− 𝑔𝑒𝑜_𝑑𝑖𝑠𝑡 (𝐺𝑖 ,𝐺𝑖,𝑗 )𝜌

)
(5)

𝜌 =
𝜎2

2
(6)

where 𝑔𝑒𝑜_𝑑𝑖𝑠𝑡 (𝐺𝑖 ,𝐺𝑖, 𝑗 ) is the geodesic distance between 𝐺𝑖 and
𝐺𝑖, 𝑗 , and 𝜎 is the hyper-parameter that controls the similarity de-
caying with respect to the distance. This kernel is used to calculate
the geo score between 𝐺𝑖 and all elements in 𝑃 , producing the vec-
tor 𝐿 ∈ 𝑅𝑛 . 𝐿 is the input of a fully-connected layer that outputs
𝐻 ′ ∈ 𝑅𝑛 :

…	

Euclidean 
Distance	
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Attention	
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Distance	
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Figure 1: The attention network proposed in this work.

𝐻 ′ =𝑊 ′.𝐿 + 𝑏′ (7)

where𝑊 ′ ∈ 𝑅𝑛×𝑛 is a matrix with weights learned during training
and 𝑏 ′ the bias factors. The normalized geo attention weights for
each neighbor 𝑗 is computed by a softmax layer:

𝑎𝑔𝑒𝑜 (𝐺𝑖 ,𝐺𝑖,𝑗 ) =
𝑒𝑥𝑝 (𝐻 ′

𝑗
)∑𝑛

𝑗′=1 𝑒𝑥𝑝 (𝐻
′
𝑗′ )

(8)

Lastly, the geo attention vector 𝑣𝑔𝑒𝑜 (𝐺𝑖 ) ∈ 𝑅4 is calculated by:

𝑣𝑔𝑒𝑜 (𝐺𝑖 ) =
𝑛∑
𝑗=1

𝑎𝑔𝑒𝑜 (𝐺𝑖 ,𝐺𝑖,𝑗 ) [𝐺𝑖,𝑗 ⊕ 𝐴𝑖,𝑗 ⊕ Δ𝑑𝑖,𝑗 ⊕ 𝑦𝑖,𝑗 ] (9)

where Δ𝑑𝑖, 𝑗 is the geographic distance between house 𝑖 and its
neighbor 𝑗 , 𝑦𝑖, 𝑗 is the price of the neighbor 𝑗 , and ⊕ the concatena-
tion operator. The dimension of 𝑣𝑔𝑒𝑜 (𝐺𝑖 ) is the sum of 𝐺𝑖, 𝑗 ∈ 𝑅2,
𝐴𝑖, 𝑗 ∈ 𝑅𝑇 , Δ𝑑𝑖, 𝑗 ∈ 𝑅1 and 𝑦𝑖, 𝑗 ∈ 𝑅1. The resulting vector 𝑣𝑔𝑒𝑜 (𝐺𝑖 )
is hence the weighted sum of the vectors 𝐺𝑖, 𝑗 concatenated with
Δ𝑑𝑖, 𝑗 and 𝑦𝑖, 𝑗 weighted by the learned normalized geo attention
weights.

3.3 Model Training
To train the model and be able to create the house embedding, on
top of the network we use a regression layer, which is a single
neuron with an activation function chosen empirically, as we show
in Section 4, that receives the house embedding as input. During
training, the network minimizes the following loss function:

𝐿
(
\
)
=

1
𝑁

𝑁∑
𝑖=1

|𝑙𝑜𝑔 (𝑦𝑖 ) − 𝑙𝑜𝑔 (�̂�𝑖 ) | (10)
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Table 1: Information about the 4 datasets used in the evalu-
ation.

Region Attr Samples Mean Std
SP 6 68,848 741,952 411,643
POA 6 15,368 443,798 228,517
FC 12 83,136 155,164 76,507
KC 19 21,608 540,098 367,156

where 𝑦𝑖 is the actual price of house 𝑖 , 𝑦𝑖 is the predicted value,
\ are all learnable parameters in the proposed model, and 𝑁 the
number of houses in the training data. We use Adam optimizer
algorithm [14] to minimize the loss function with respect to \ . The
backpropagation algorithm is used to compute the parameters of
the network.

4 DATA OVERVIEW
In this section, we present and analyze the datasets of the real estate
listings we used in the evaluation of our work.

4.1 Data Description
We evaluated our house embedding on 4 datasets. Two of them
are from USA counties: King County6 (KC) in Washington State
and Fayette County7 (FC) in Kentucky, the other two datasets, São
Paulo (SP) and Porto Alegre (POA), are from two Brazilian cities,
collected from hundreds of Brazilian real-estate Web websites using
a web crawler. Table 1 provides some details about the 4 datasets:
they varied in terms of number of attributes, number of samples,
mean selling price and standard deviation of the price.

4.2 Data Analysis
Figure 2a presents the distribution of the average geodesic distance
in kilometers of the 60 nearest neighbors of the houses in each
dataset. The numbers show that there is a great variation in terms of
geographic density across the datasets: the FC dataset is the densest
one with median average distance of about 0.18 Km whereas the
KC dataset is the least dense with median average distance of 0.74
km. Figure 2b presents the distribution of the average euclidean
distance of the structural features of the 60 nearest neighbors of
the properties in each dataset. We normalized the distance for each
dataset using min-max. The distributions depict major differences
between the datasets: houses in FC and KC datasets are much more
homogeneous in terms of structural features with median averages
of 0.025 and 0.002 respectively than houses on the SP (0.21) and
POA (0.12) datasets .

Recalling that we model house price prediction as a spatial
interpolation problem, whose main assumption is that spatially
distributed objects are spatially correlated, we empirically verify
whether the price of the houses in those datasets holds this prop-
erty. For that, we calculate the semivariance [28] on each dataset.
Semivariance is used to measure spatial correlation between values
of observations 𝑍 (𝑋 ) at different locations in space. In our context,

6https://www.kaggle.com/harlfoxem/housesalesprediction
7https://www.cs.uky.edu/ zach/publications/bessinger2016quantifying
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Figure 2: (a) Variation in quantiles of the average geodesic
distance (in km) of 60 nearest houses for the 4 datasets.
(b) Distribution in quantiles of the average euclidean dis-
tance of 60 nearest houses in terms the houses’ structural
features for the 4 datasets. We normalized the distance val-
ues for each dataset using min-max normalization since the
datasets have different attributes for the house.

𝑍 (𝑋 ) is the price of a house 𝑋 . Semivariance is estimated from the
data as follows:

𝛾 (ℎ) = 1
2𝑁

𝑁∑
𝑖=1

(𝑍 (𝑋𝑖 + ℎ) − 𝑍 (𝑋𝑖 ))2 (11)

where N is the number of pairs of sample observations separated
by distance ℎ. The plot of 𝛾 (ℎ) versus ℎ is known as the experi-
mental semivariogram [28]. As a measure of variance, the lower
its value, the higher the homogeneity of the phenomenon under
study. Figure 3 presents the experimental semivariogram8 of the
log of the house prices in the four datasets varying the distance ℎ
from 0 to 1 Km. The semivarigramns show that there is a spatial
correlation in the house prices in all cities, i.e., the closer the houses,
the higher the price auto-correlation. The price of houses in KC
has the lowest semivariance compared to the other ones: houses
have semivariance of 0.05 when their distance is close to 0 Km, and
0.14 with the distance of 1Km. FC has a similar semivariance with
distance close to 0 Km (0.06), but this value significantly increases
as the houses get distant to each other: semivariance of 0.17 when
the distance is 1 Km. Regarding the other datasets (SP and POA),

8To generate the experimental semivariogram, we used the variog function of the
geoR package (cran.r-project.org/web/packages/geoR/). The following parameters
were used: type (classical), direction (omnidirectional), and max.dist (1).
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Figure 3: Experimental semivariogram of the 4 datasets.

the semivariances of the price of the houses are much bigger. For
POA, for instance, the semivariance of close houses (distance close
to 0) is 0.16 and 0.21 for houses with the distance of 1Km.

To further illustrate the spatial auto-correlation between the
properties on the datasets, Figure 4 shows the spatial distribution of
house prices by quartiles. As one can see, there are spatial clusters
of houses with similar prices on all datasets. In addition, there are
no abrupt changes of magnitude: houses in the top quartile are not,
in most of the cases, close to properties in the lowest quartile.

5 EXPERIMENTS
In this section, we assess the effectiveness of house embedding
on different regressors and compare our solution with previous
approaches.

5.1 Experimental Setup
Data Split. For SP, POA and KC, we split each dataset in 72% for
training, 8% for validation and 20% for test. For FC, we used the
training and test sets provided by the authors of the dataset. To
make the predictions on houses in the test set, we only consider
the neighboring houses present on the training set.

Regressors. We executed the following regressors to evaluate the
impact of using house embedding as a feature set on their perfor-
mance:

• Linear Regression (LR): regular Linear Regression with
its default settings in its scikit-learn [21] implementation .

• Random Forest (RF) [7]: random forests are ensembles of
tree-based models. We used the RF implementation on scikit-
learn. The parameters of the RF were optimized by a cross-
validation grid-search. We varied the parameter number of
trees with the following values: 50, 100, 200, 700 and 1000.
We used the version implemented on scikit-learn.

• Lightgbm (LG) [13]: lightgbm is a Gradient Boosting De-
cision Tree. We used a cross-validation grid-search as well
varying the following values for the attribute number of

trees: 50, 100 and 200; number of leaves: 3, 4, 5, 100 and 300;
and learning rate: 0.03, 0.05, 0.07 and 0.1. We executed the
implementation available by its authors9.

• Xgboost (XB) [9]: Xgboost is another implementation of
Gradient Boosting Decision Tree.We ran a Python package10
optimizing the following parameters by a cross-validation
grid-search: minimum child weight (4, 10 and 20), gamma
(0.01, 1, 1.5 and 5), subsample (0.4, 0.2 and 0.6), column sample
by tree (0.1, 0.5 and 1.0), learning rate (0.05, 0.1 and 0.01) and
max depth (50, 100 and 200).

• Auto-sklearn (AS) [11]: AS is a automated machine learn-
ing (AutoML) toolkit11 that performs algorithm selection, hy-
paremeter tunning and builds ensemble of predictors. Those
ensembles are composed of individual regression models
with a weight associated to each one of them. AS contains a
great diversity of regression models such as Support Vector
Regression, KNN, Adaboost, Ridge Regression and so on. We
used the following parameters’ values for training the mod-
els: time_left_for_this_task:39600; per_run_time_limit:30,
and ml_memory_limit:6144.

• Regression Layer (RL): this regressor is the last layer from
our attention model, which produces the price prediction
given the resulting feature map (house embedding) from the
previous layers.

Feature Sets. For each regressor, we built models using 5 different
feature sets:

• HA: the structural features and the geographic coordinates
of the house available on the respective dataset.

• HA+HC: the structural features and geographic coordinates
of the house, and the structural features and geographic
coordinates of its neighbors and their prices available on the
respective dataset.

• HA+POI: the structural features and the geographic coordi-
nates of the house and the POI feature set based on the POIs
around it;

• HE: the house embedding of dimension 50 built by ourmodel;
• HE+POI: the house embedding and the POI feature set based
on the POIs around it.

Spatial Interpolators. We executed the following traditional spa-
tial interpolation models which, similar to our attention model, try
to implicitly capture spatial context from the prices of houses in
the vicinity:

• Inverse Distance Weight (IDW) [25] is an interpolator
that considers the existence of spatial autocorrelation. It es-
timates the value of a house based on the prices of their
neighbors weighted by their inverse distance to it. We exe-
cuted it using the gstat [20] package of the R language with
the following parameters: maxdist: inf and inverse distance
weighting power: 2.

• Universal Kriging (UK) [17] is another model that consid-
ers spatial autocorrelation. In addition to the house’s spatial
context, UK uses its structural features to perform the predic-
tion. To train the models, we used all the features available

9https://github.com/microsoft/LightGBM
10https://xgboost.readthedocs.io/
11https://automl.github.io/



Woodstock ’18, June 03–05, 2018, Woodstock, NY Darniton Viana and Luciano Barbosa

(a) FC (b) SP

(c) POA (d) KC

Figure 4: Spatial distribution of house prices on the 4 datasets.

in each dataset except for KC, wherein the model achieved
a very poor performance (MALE=0.7). To handle that, we
removed each individual feature from the original set and
verified that the model for KC produced the best results
when the feature “square foot lot” was removed. We also
used the gstat package to run it and the Gaussian curve was
the theoretical model for the semivariogram.

Due to the restrictions of these models, it was necessary to elim-
inate houses with the same latitude and longitude. To do so, we
grouped each location and calculate the average of the remaining
attributes for each dataset. Because of that, there was a reduction
in the size of 3 datasets: SP (56,663 instances), POA (10,952) and KC
(20.832), but not for FC. We normalized the numerical raw features
using z-score normalization (mean=0 and standard deviation=1)
and for the categorical raw features we apply one hot encoding [6].

Model Settings. We implemented our attention network using
Keras [10]. To choose the best hyper-parameters, we used Hyperas,
which is a wrapper around hyperopt [4]. The hyper-parameters,
the values we used to search and the best values of the hyper-
parameters for each dataset based on the validation set are pre-
sented in Table 2. For each dataset, we train the network for 300
epochs and selected the one that presented the best result in the

Table 2: Values of the hyper-parameters that we varied and
their best numbers on the validation set.

Best Value
HP Values SP POA FC KC
n-nearest 5, 10, 15, 60 30 20 45
houses 20, 25, 30,

35, 40, 45,
50, 55, 60

sigma(𝜎) 2, 5, 10, 10 10 10 2
15, 20

nodes 5, 10, 15, 60 15 60 60
layer 20, 25, 30,

35, 40, 45,
50, 55, 60

LR [0.001-0.01] 0.001 0.008 0.001 0.001
batch size 250, 300, 400 250 250 250 250

500
act func Relu and ELU ELU ELU ELU ELU
hidden
act func Relu, ELU linear linear linear linear
regression and linear

validation data.
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Baselines.Most of previous approaches for house price estimation
that applies deep learning does so by using some explicit spatial
context such as house or satellite images, or points of interest. Since
it is not straightforward to collect this information, we opted to
compare our solution with previous ones that used the FC dataset
for evaluation with the same training/test sets, without the need to
actually implement them. The approaches we compare with are:

• [5]: this approach uses a random forest regressor for house
price estimation. The model uses the structural features and
features extracted from street-level images of the house using
convolutional neural networks.

• [3]: this work proposes a convolutional neural network that
produces a vector from features extracted from satellite im-
ages of the vicinity of the house and its structural features.
This vector is then used by a regressor for house price esti-
mation.

Error Measures. We evaluate the performance of the models by
using 3 different error measures widely used in regression tasks:
mean absolute log error (MALE), root mean square error (RMSE)
and mean absolute percentage error (MAPE):

𝑀𝐴𝐿𝐸 =
1
𝑁

𝑁∑
𝑖=1

|𝑙𝑜𝑔 (𝑦𝑖 ) − 𝑙𝑜𝑔 (�̂�𝑖 ) | (12)
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where 𝑦𝑖 is the actual price of house 𝑖 , 𝑦𝑖 is the predicted value
and 𝑁 the number of houses in the training data. We opted to use
those 3 measures because: RMSE was used to evaluate the previous
approaches which we compare with in this section; MAPE gives a
very intuitive idea regarding the percentage of the error; and MALE
has been shown to be a robust measure to evaluate regression mod-
els [27].

Points of Interest. As aforementioned, our approach tries to cap-
ture the spatial context for house price prediction solely based on
the houses in the neighborhood. To compare our solutionwith an ap-
proach that explicitly captures this context, we collected points of in-
terest (POIs) of the houses present in our 4 datasets. They represent
establishments such as shops, restaurants, hotels, parks, schools,
government buildings, and so on. Table 3 shows details about this
data. To collect the POIs, we use the place API of here.com12. For
each location (latitude and longitude), we retrieved the 50 nearest
POIs within 2 km radius. Following [3], we define each POI 𝑝 con-
taining latitude and longitude and a type of place Γ𝑝 . The set of all
places is denoted as Υ. In order to describe a house 𝑖 in terms of
its POIs, we generate the feature vector 𝑃𝑖,ℎ , which represents the
number of POI types within a distance ℎ. Mathematically:

𝑃𝑖,ℎ = [𝑃𝑖,ℎ,𝑡 ], ∀ 𝑡 ∈ Υ, 𝑃𝑖,ℎ,𝑡 = { |𝑝 |, 𝑑𝑖,𝑝 < ℎ, 𝑡 = Γ𝑝 } (15)

12http://developer.here.com

where 𝑑𝑖,𝑝 is the geodesic distance between house i and POI 𝑝 and
|.| is the cardinality operation.

Table 3: Information about the POIs on the 4 datasets.

Characteristic SP POA FC KC
Num. POI 3,441,975 768,223 4,015,602 1,033,804
Num. Types 49 44 45 50

5.2 Results
First, we evaluate our model primarily as a feature generator for
house price prediction by assessing the effectiveness of house em-
beddings created by the learned models. The results obtained by
each regressor on the 4 datasets using the different feature sets
are presented in Table 4. The lowest error value for each dataset
is highlighted with a dot (•). In all 12 scenarios (4 datasets x 3
measure errors), a regressor using the house embedding obtained
the lowest value of MALE, MAPE and RMSE, outperforming the
regressors that use raw attributes of the house (HA), and the ones
that try to capture spatial context implicitly by looking at the neigh-
bors’ attributes (HA+HC) or explicitly by using the POIs on the
house’s neighborhood (HA+POI). Regressors using only HE ob-
tained the best results in 8 out of 12 of scenarios, whereas HE+POI
achieved the lowest error in 5 of them (there was a tie between
HE and HE+POI on the FC dataset on MALE). This indicates that
the learned house embeddings (HE) in fact capture the implicit
spatial context of houses to predict their prices and, in some cases,
information from POIs can complement HE to achieve the best
result.

Regarding the performance of individual models, Auto-sklearn
using house embeddings (HE or HE+POI) had the best performance
on most of the scenarios. For instance, on MALE, it obtained the
lowest errors on all datasets: 0.134 for SP, 0.142 for POA, 0.097 for
FC and 0.113 for KC. Recalling that Auto-sklearn builds an ensemble
of models wherein each model has a weight, Table 5 shows that
the model with the highest weight in the Auto-sklearn ensemble
using HE, in the four datasets, was Linear Regression and/or Sup-
port Vector Regression using linear kernel. On the other hand, the
ensembles created on raw features predominantly used tree-based
ensemble models (Random Forest and Gradient Boosting). With
respect to our trained attention network as a regressor, it achieved
the lowest values on 3 scenarios: on the KC dataset on the measures
RMSE (115763) and MALE (0.113); and on the POA on MAPE (9.58).

Another interesting observation is that although Linear Regres-
sion using house embeddding has only obtained the best results on
few scenarios, its numbers show that it was very competitive with
the other approaches. In terms of RMSE, for instance, it achieved
the best result on SP, and POA, and its performance in comparison
to the best approaches on the other datasets were: 0.005% worse
on FC and 0.004% worse on KC. Its results were, however, very
poor using raw features: HA, HA+HC or HA+POI, as opposed to
more competitive algorithms such as Random Forest, Xgboost and
Lightgbm (see Table 4).

We can conclude from those results that the house embedding
in fact can capture the complexities associated with the house’s
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Table 4: Values of MALE, RMSE and MAPE of the regressors using the 5 features sets. Values marked with star represent the
lowest value on the dataset and values in bold the lowest value for each regressor.

FC KC SP POA
Mod. Feature MALE RMSE MAPE MALE RMSE MAPE MALE RMSE MAPE MALE RMSE MAPE
LR HA 0.219 51177 15.09 0.192 209202 15.31 0.266 264690 22.54 0.261 153806 22.52

HA+HC 0.154 26982 10.14 0.241 327883 18.04 0.187 201275 14.73 0.241 184296 18.50
HA+POI 0.202 46473 14.26 0.179 210187 13.94 0.257 257596 21.82 0.239 144529 20.77
HE+POI 0.097• 22911 6.38 0.114 116271 8.05 0.135 155039 9.93 0.144 94416 10.01
HE 0.097• 22921 6.36 0.114 116448 8.00 0.135 154964• 9.92 0.144 94201• 10.08

RF HA 0.111 26762 6.92 0.123 135268 8.50 0.140 158876 10.12 0.160 100752 11.41
HA+HC 0.107 24972 7.18 0.132 164206 9.52 0.159 178738 12.33 0.171 107138 12.82
HA+POI 0.108 26153 6.78 0.124 137725 8.50 0.151 167782 11.52 0.159 100292 11.56
HE+POI 0.098 23297 6.40 0.119 117329 8.36 0.137 156865 10.07 0.146 95421 9.98
HE 0.099 23395 6.48 0.118 116200 8.34 0.137 157288 10.06 0.147 95832 10.22

LG HA 0.108 25069 7.13 0.115 124667 8.03 0.146 161485 11.19 0.256 101434 12.23
HA+HC 0.102 23826 6.83 0.117 134942 8.42 0.148 166866 11.37 0.201 104005 12.51
HA+POI 0.106 24743 7.00 0.115 122451 8.05 0.156 169593 12.48 0.151 97068 10.48
HE+POI 0.099 23049 6.47 0.118 129498 8.39 0.136 156161 9.96 0.147 95825 10.38
HE 0.099 23111 6.47 0.117 120284 8.18 0.136 156074 10.04 0.147 95756 10.35

XB HA 0.107 24624 7.19 0.116 128289 7.97 0.140 159018 10.41 0.154 97256 11.06
HA+HC 0.108 24827 7.34 0.124 136051 9.12 0.156 172180 12.30 0.175 107515 13.57
HA+POI 0.104 24148 6.94 0.115 124274 8.22 0.158 172786 12.47 0.148 95423 10.49
HE+POI 0.100 23361 6.64 0.123 123575 8.81 0.137 156685 10.19 0.147 95904 10.65
HE 0.100 23224 6.51 0.122 122493 8.80 0.137 157288 10.07 0.148 95798 10.58

AS HA 0.113 27166 7.08 0.115 127714 7.92 0.144 161359 10.45 0.169 105156 12.28
HA+HC 0.108 25492 6.82 0.133 123361 7.92 0.165 184744 12.95 0.163 101972 9.85
HA+POI 0.109 25798 7.01 0.120 137029 8.55 0.152 167919 11.51 0.161 102113 11.73
HE+POI 0.097• 22783• 6.29• 0.113 116546 7.83• 0.135 155115 9.92 0.142• 94418 9.90
HE 0.097• 22837 6.31 0.113• 116109 9.88 0.134• 166866 9.79• 0.143 94311 12.22

RL HE 0.098 23177 6.49 0.113• 115763• 8.00 0.135 155585 9.80 0.143 94492 9.58•

Table 5: Weights of each individual regressor in the ensem-
bles created by Auto-sklearn using different feature sets.
The values are shown in percentages.

KC FC SP POA
Model HA HE HA HE HA HE HA HE
Random Forest 58 2 40 - 38 2 24 1
G. Boosting 30 2 2 - 6 - 19 8
Ridge Regress. 6 16 - 4 - - - -
Adaboost 4 - - - - - - -
SVR 2 36 - 2 - 2 - 36
LR - 36 - 72 - 72 - 36
KNN - 8 36 8 30 16 52 6
Decision Tree - - 4 - - 2 8 4
Extra Tree - - - 14 26 6 - -

features and its implicit spatial context, represented by its neighbors,
to perform house price prediction, allowing such simple and light
models such as Linear Regression to obtain very competitive results.
The same argument can be made regarding our attention model,
since a simple neuron with a linear activation function (see Table 2)
on top of the house embedding obtains good results, and the same
for the Auto-sklearn HE: Linear Regression, as we pointed out
before, is one of the the models with the highest weight on the
ensemble using the HE feature set.

We can observe similar results whenwe consider the lowest error
of each regressor individually regarding the feature sets (presented
in bold in Table 4): 56% of the best results are achieved using only
HE and 30.67% of them using HE + POI. This means that, in 86.67%
of the cases, the use of HE was essential for individual regressors
to achieve the best results. For instance, the lowest errors in all
scenarios for Linear Regression and Random Forest were achieved
with HE or HE+POI feature sets.

Impact of the Attention Mechanism. To verify the impact of
the attention mechanism on the performance of the network, we
executed ablation experiments removing each one of the attention
layers: euclidean and geographical. Table 6 presents the results. The
removal of the geo attention has a great impact on the performance
of the network (see Tables 4). For the POA dataset, for instance, the
MALE value increased 54%: from 0.143 (full attention network) to
0.221. For the euclidean attention, on the other hand, there was not
a great increase (see Table 4) on MALE, RMSE and MAPE with its
removal from the network. From these numbers, we can conclude
that the price of the houses in the vicinity is more useful to house
price prediction than houses with similar characteristics.

We also evaluate the impact of the learned weights on the at-
tention layers. Table 6 shows that on both attention layers there is
an increase on the MALE, RMSE and MAPE values for all datasets
when the weights are not considered in those layers, meaning the
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Table 6: Impact of the attention mechanisms in the per-
formance of the network. The column “No Att” represents
the model without the respective attention layer and “No
weigh.” means the learned weights in the respective atten-
tion layer were removed.

Euclidean Att Geo Att
City Error No Att No weig. No Att No weig.
SP MALE 0.137 0.138 0.148 0.158

RMSE 157488 157667 165135 171638
MAPE 10.23 10.14 10.50 12.37

POA MALE 0.147 0.158 0.221 0.214
RMSE 97010 101459 129325 133436
MAPE 10.27 11.73 19.88 16.73

FC MALE 0.101 0.101 0.099 0.101
RMSE 23894 23891 23194 24052
MAPE 6.66 6.66 6.43 6.48

KC MALE 0.113 0.117 0.120 0.117
RMSE 125154 112444 120884 127971
MAPE 8.09 8.49 9.48 8.45

learned weights in the attention layers contain very useful infor-
mation for the prediction.

Comparison with baselines. In Table 7, we present a comparison
on the Fayette County dataset between our approach and the two
baselines aforementioned. We only provide RMSE values because
this was the only error measure presented in their work. In addition
to the baselines and our attention network, we present the RMSE
for the Auto-sklearn HE, which is the regressor with the lowest
error for the feature set HE. The numbers show that the approaches
that use house embedding (Attention Network and Auto-sklearn
HE) present a superior performance in comparison to the baselines.
It does so by capturing the spatial context of a house relying only
on the information of the houses in its vicinity, as opposed to the
two baselines that use more costly strategies to capture the spatial
context by extracting features from images related to the house and
its neighborhood to make the prediction.

Comparison with Spatial Interpolators. We also compare the
performance of our approach with conventional spatial interpola-
tors, which, similar to our attention network, implicitly capture
spatial dependence from neighboring points. Table 8 shows that in
all scenarios, our geo-attention-based network outperforms them.
In fact, UK only achieved better results than linear regression us-
ing HA (see Table 4), whereas IDW obtained the worst results
on all scenarios mainly because it only takes into consideration
the geographic information of the neighbors to make the prediction.

6 RELATEDWORK
Many previous approaches have proposed solutions to the problem
of house price prediction. In this section, we focus our discussion on
the more recent techniques that use deep learning and traditional
statistical-learning approaches to estimate the real estate price.

Table 7: RMSE of our solution versus previous approaches
on the Fayette County dataset. Recalling that Auto-sklearn
HE is Auto-sklearn using the house embedding as feature
set.

Model RMSE
[5] 28281
[3] 24439.64 ± 11.63
Attention Network 23177
Auto-sklearn HE 22837

Table 8: Results of the spatial interpolators.

IDW UK

City MALE RMSE MAPE MALE RMSE MAPE

SP 0.407 374651 35.49 0.204 218808 16.90
POA 0.390 213127 33.22 0.222 133972 18.75
FC 0.288 61768 21.05 0.173 38958 11.65
KC 0.246 279202 18.76 0.140 135900 14.28

6.1 Deep Learning
Poursaeed et al. [22] propose a solution that analyzes internal and
external images of a house to estimate its luxury level using a
deep convolutional neural network. Based on this estimation along
with the structural features of the house, they perform the price
prediction. As opposed to our approach, both approaches do not
take into consideration the price and characteristics of the houses in
the neighborhood. Another image-based approach is proposed by
Bency et al. [3]. They use a convolutional neural network to extract
a representation from satellite images of the neighborhood of the
house in addition to home characteristics to perform the prediction.
To capture the spatial context of a property, You et al. [29] apply a
Bidirectional Recurrent Neural Network (BRNN) [24] on a sequence
of neighboring properties generated by a random walk algorithm to
perform the prediction. They represent the houses in the network
with the average vector of the images of the house represented
by vectors created using a pre-trained image model. The main
drawback of those image-based approaches is the cost of collecting
and processing the images to build their models.

6.2 Traditional Statistical Learning
Liu et al. [16] propose the hierarchical spatial functional model
(HSFM) using spatial spline regression [23] that decomposes the
price of a house in its structural characteristics and the land ad-
vantage at its location in two different levels: global (region of
interest) and local (sub-region or sub-community). They employ
this hierarchical strategy to model irregularly shaped geographic re-
gions. Similar to our approach they use spatial dependency in their
model but its main limitation is the high cost of partitioning the
sub-regions, mainly when using more extensive datasets. We were
not able to compare their approach with ours because of missing de-
tails in their methodology. Another statistical approach [12] aims to
estimate the investment value of estates (house price) and ranking
all estates accordingly in rising and falling markets. To perform the
prediction, they propose a geographic method called ClusRanking
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that leverages three levels of geographical: the characteristics of
the neighborhood (individual dependency); features of nearby real
estate (peer dependency); and the level of prosperity of the region
measured in terms of business conducted in the surroundings of
the property (zone dependency). For that, geographic features are
extracted from the data; the level of neighborhood popularity is
estimated through the analysis of taxi’s trajectory data; and how
much a property is influenced by the level of prosperity of the
region by its proximity to the center of a given region. Finally, a
linear model is used to merge the three types of dependency factors
and then perform the prediction of the value of the property. This
work is related to ours, given that both capture the spatial depen-
dence found between real estate prices, but we assume that spatial
autocorrelation can be captured implicitly, as opposed to them that
need external data for that.

7 CONCLUSION
In this paper, we presented a novel spatial interpolation approach
based on attention networks applied to the problem of house price
prediction. To model the features of a house in its neighborhood,
we implemented two attention layers. The first one gives weights
to neighboring houses based on their similarity to the property one
wants to predict (euclidean attention), and the second one weights
houses based on their geographic distance to the property (geo
attention). This network learns a vector representation (HE) of the
house that embeds the house's attributes and its spatial context into
a common sub-space.

We performed an extensive evaluation on 4 real-world datasets
that shows that in fact regressors using the HE outperforms models
using raw and POI features, and even simple models as a linear
regression has competitive performance to other modern and more
sophisticated approaches as Xgboost and Lightgbm. In addition,
our proposed solution outperformed previous deep-learning house
price prediction approaches that capture the local context extract-
ing features from images, which is very costly, as opposed to our
approach that only relies on information of neighboring house to
perform this task. Finally, our proposed solution obtain better re-
sults when compared to models that are historically used to model
spatial autocorrelation phenomenon. As future work, we plan to
extend this approach to problems of spatial interpolation in general,
and apply the learned embeddings to other tasks such as product
recommendation and entity resolution.
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