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Abstract Extracting information about Web entities has be-
come commonplace in the academy and industry alike. In
particular, data about places distinguish themselves as rich
sources of geolocalized information and spatial context, serv-
ing as a foundation for a series of applications. This data,
however, is inherently noisy and has several issues, such
as data replication. In this work, we aim to detect repli-
cated places using a deep-learning model, named PlacERN,
that relies on multi-view encoders. These encoders learn dif-
ferent representations from distinct information levels of a
place, using intermediate mappings and non-linearities. They
are then compared in order to predict whether a place pair
is a duplicate or not. We then indicate how this model can
be used to solve the place linkage problem in an end-to-end
fashion by fitting it into a pipeline. PlacERN is evaluated
on top of two distinct datasets, containing missing values
and high class imbalance. The results show that: (1) Plac-
ERN is effective in performing place deduplication, even
on such challenging datasets; and (2) it outperforms previ-
ous place deduplication approaches, and competitive algo-
rithms, namely Random Forest and LightGBM using pair-
wise features, on both datasets in regards to different metrics
(F-score, Gini Coefficient and Area Under Precision-recall
Curve).

Keywords Places · Record Linkage · Deep Learning ·
Representation Learning

Vinı́cius Cousseau
Incognia, Palo Alto, California, USA
E-mail: vinicius.cousseau@incognia.com

Luciano Barbosa�
Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
E-mail: luciano@cin.ufpe.br

1 Introduction

Collecting and managing data from the Web provides a way
for applications to access a wide range of data domains and
plentiful records. Due to many factors, it is a process which
suffers from issues pertaining to a noisy and unstructured
nature. While the amount of information covered by the Web
grows steadily, only 60.3% of its websites display their data
in some structured manner [50]. On top of that, one may
also encounter well-structured but ill-defined data, which
not only is harder to treat, but also lessens the informational
value of it.

In this paper, we deal with data about places around the
world. These places are gathered mostly from the Web by
a focused Web crawler, and each of them represents a real
physical space with a given name, location, and several other
attributes which are further presented in this work. Thus,
places are a rich source of location-sensitive information and
geospatial context, with data providers such as Factual 1 and
Safegraph 2 collecting them for commercial purposes.

Through this context, they spark interest in applications
such as recommendation platforms3, where users may post
some reviews and receive suggestions on places to visit, and
check-in apps4, where users may check-in to a place and
share their experience. Places also play a central role in the
analysis of users’ behavior patterns for engagement solu-
tions, such as the one developed by Inloco5.

One of the most critical normalization issues that must
be addressed when dealing with places collected from the
Web is replicated data. Replicated places in a database may
lead to problems such as fragmentation of user activity in

1 https://www.factual.com/data-set/global-places/
2 https://www.safegraph.com/
3 https://www.tripadvisor.com/
4 https://www.swarmapp.com/
5 https://www.inloco.com.br/solutions



2 Vinı́cius Cousseau, Luciano Barbosa�

analytical systems, where the visitation pattern of a user may
be wrongly determined. For instance, if an analytical system
depends on the frequency of visits to a category of place by a
given user to infer their preferences, and a restaurant entity is
replicated N times in its database, the system could account
for N separate visits to a restaurant instead of a single one,
making this user’s preferences misleading.

Record linkage, also commonly known as entity resolu-
tion or entity matching, is a field which refers to the detec-
tion of redundant data [19]. This field has evolved consider-
ably since its inception, as the problem not only persists but
is also enhanced, because the Web is mostly open to user
input and there are usually a plethora of websites which dis-
play the same kind of information in different forms. Record
linkage is commonly divided into three major steps: block-
ing, where records are aggregated based on some common
characteristic to improve scalability; pairwise matching, in
which pairs of records are matched against each other to de-
tect duplications; and clustering, where pairs deemed as du-
plicates in the pairwise matching step are grouped. Among
those, the pairwise matching of entities plays a central role
in typical record linkage pipelines [3,2,11].

The detection of replicated place records is affected by
toponym ambiguity [6], that is, different names for the same
real-world place, such as synonyms, abbreviations, and rep-
resentations of a toponym in a different language (translit-
erations), or different places with the same name in differ-
ent geographical positions. This ambiguity adds to the noise
present in Web data to make textual information of place
entities cumbersome to deal with. Another challenge to per-
form this task is that duplicate cases are uncommon, and
thus handling class imbalance gracefully is important for
any solution to this problem.

Using a single data field to perform pairwise matching,
such as addresses or phone numbers, is not reliable as their
coverage on the Web may be low, and it may also lead to bi-
ased matches producing imprecise duplicate detection. For
instance, even though two places with the same phone num-
ber may be duplicates in a dataset, they may also be places
from a same chain store sharing a customer service central
phone number. Hence, representing places as a composition
of fields is beneficial to build a more robust pairwise match-
ing solution.

A popular approach for record linkage and similar match-
ing tasks in the recent years is utilizing machine learning
techniques to perform comparisons between records or rep-
resentations of them [25,23,53,45,44,32,2,56]. Yang et al.
[56], for instance, attempt to first build generic representa-
tions for places in an unsupervised manner and use them for
the deduplication task in a supervised manner. As opposed
to them, we devise a deep neural network named PlacERN
(Place Entity Resolution Network) that builds representa-
tions in a supervised manner for pairs of places, directly on

the deduplication task. More specifically, this network learns
distinct representation encoders based on fields of a place:
its name, address, geographical coordinates, and categories.
These representations are combined in an affinity layer by
concatenating their vectors and calculating different types
of similarities between them. Finally, a fully-connected net-
work with a final sigmoid layer receives the affinity layer’s
output and predicts the likelihood of a pair of places being
a duplicate, serving as the core driver behind a full-blown
record linkage pipeline.

We consider the contributions of this paper to be as fol-
lows:

• As part of a working system [10], we develop PlacERN,
a deep neural network which is able to capture infor-
mation from multiple place fields and use it to gener-
ate a representation for a place pair. This representation
is then utilized to classify a given pair into duplicate or
non-duplicate, and handles missing values by design;

• We train and evaluate PlacERN against both PRF and
PLGBM, two supervised models developed in this work
on a set of pairwise features, and other methods in the
state-of-the-art, with industrial datasets having instances
with missing values and imbalance ratios from 8.24 to
24.0. In all scenarios, PlacERN is shown to surpass all
other compared models in terms of Fβ=0.5, normalized
Gini coefficient, and Area Under Precision-recall Curve.
PRF and PLGBM are also shown to outperform other
baseline methods;

• We perform feature importance studies using a game
theoretic approach (Shapley Additive Analysis [31]) on
top of PRF and PLGBM in order to drive the develop-
ment of PlacERN, showing that most gains are to be ex-
pected from places’ names and addresses;

2 Background

This section serves as a foundation for understanding the
data records dealt with by our proposed solution. It provides
explanations on what a place entity is in the context of this
work, which attributes are commonly associated with it, and
issues pertaining to each attribute. We use these concepts to
lay out our research problem.

Place Entity Definition Looking at previous works, we see
that the “place” term is used ambiguously when referring to
an entity type in a database. For instance, some works define
places as any entity labelled as such in a specific Web service
[13,56], while others simply as Points of Interest (POI) [55,
17].

These inconsistencies derive from the intrinsic charac-
teristics of each database and from the business interests in-
volved in common place services. While we do not aim to
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tackle these differences in nomenclature, the definition of a
place is the context of our work is given by:

Definition 1 [Place entity]. A place entity in our database
is a direct representation of a physical location in the real
world which has well-defined boundaries, a clear purpose
for visitation, and an area sufficient for a person to be en-
closed in.

Some examples of places that fit this definition are stores,
shopping malls, restaurants, and parks. Meanwhile, stretches
of sands on a beach, statues, and building floors are not.

2.1 Place Fields

The place fields utilized in this work, which are also encoun-
tered in other Web-based place datasets, are an id (a unique
textual identifier), a name n, a geo location g (expressed in
latitude and longitude coordinates), a textual address r, a list
of categories c, a phone number, a homepage URL, and a
parent place id (which is an id of another place which en-
compasses the current one, if any). Only the id, the name
n, and the location g are obligatory in our work, and we
overload the address nomenclature to refer to thoroughfares
(street names) and sub thoroughfares (complements) only.

This collection of fields presents several issues which
may be encountered in any Web-based database in this do-
main. Textual fields, for instance, suffer from normalization
problems like toponym ambiguity. The geo location field
presents issues due to a common lack of precision resulting
from the geocoding - address to latitude and longitude trans-
lation - strategies utilized by websites, or noise introduced
by GPS sensors in indoor environments - utilized by users to
create new places in the Web. Finally, the parent place id
and categories are generated in our work by a heuristic uti-
lizing name patterns and a multi-label classification model,
respectively. As such, they suffer from errors stemming from
these generational strategies.

2.2 Problem Definition

We then define our research problem as follows:

Definition 2 [Research Problem]. Given two place entities
Pa and Pb, each of them having a name n and a geographical
location g, with possible inclusions of an address r, a list of
categories c, a parentage id parent place id, a homepage,
and a phone number, we aim to detect whether they repre-
sent the same real-world place (Pa ∼ Pb).

3 PlacERN

In this section, we introduce PlacERN (Place Entity Resolu-
tion Network), a deep neural network that performs pairwise
matching to detect replicated places. For that, PlacERN cap-
tures multi-level information for each place using interme-
diate mappings and non-linearities, and then compares these
representations in order to predict whether a place pair is a
duplicate or not.

The deep neural network architecture is laid out in Fig-
ure 1. For each place pair, the network receives its names
n, addresses r, category lists c, and geographical informa-
tion g in the form of latitude and longitude pairs. Then, to
capture different views of the input, each place is processed
by four different encoders that transform its original repre-
sentation into ones more suitable for the classification task.
More specifically, word and character encoders are applied
on each place’s textual fields (name and address), a category
encoder on the category list, and a geographical encoder on
the Haversine distance calculated from the places’ latitude
and longitude.

Next, the different representations produced by the en-
coders for each place, with the exception of the geographi-
cal one, are concatenated and compared against each other
in an Affinity Generation step in order to generate simi-
larity values using different metric strategies. The resulting
merged tensor is then concatenated with the geographical
distance embedding generated by the geographical encoder,
and passed through a feed-forward network with dropout
regularization between each pair of layers. Lastly, the final
tensor is processed by a sigmoid-activated layer with a sin-
gle neuron, generating a probabilistic output which repre-
sents the likelihood of the input pair of places being dupli-
cates.

In the remainder of this section, we explain each encoder
of the proposed architecture in more detail, alongside the fi-
nal Affinity Generation steps. We also shed some light on
failed attempts to improve our model, so as to achieve a bet-
ter explanation of our thought process and assist other re-
searchers.

3.1 Word Encoder

The word-level representation encoder attempts to capture
features of words in each place’s name nPi and address rPi ,
with i ∈ {a,b}, producing a word-level place representation
ePi

w . By learning representations of these word sequences for
place pairs marked as duplicates, it is expected that words
that appear in similar contexts and represent duplications re-
side closely in the embedded space, thus pulling both places
in a pair closer.

To do that, it first transforms the name and address of
places Pa and Pb into indexed padded sequences of size Sw.
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Fig. 1: Diagram of our deep neural network architecture for classifying place pairs, PlacERN. The network receives names,
addresses, category lists, and geographical information from place pairs as input. Four distinct encoders and an affinity
generation step process this data to build a representation for the pair. This representation is passed through a feedforward
network with a final sigmoid layer, producing a probabilistic result.

They are then fed to separate regular word embedding lay-
ers for names and addresses. The word embeddings of these
sequences are initialized with pre-trained vectors of m di-
mensions to take advantage of transfer learning:

• For name embeddings, a simple case-insensitive skip-
gram model [34] was trained on top of the corpus of all
tokenized place names in our dataset;

• For address embeddings, we utilized case-sensitive em-
beddings trained with the FastText model [4] on top of a
Wikipedia and Common Crawl corpus [22].

The reasoning behind the different embedding sources
for names and addresses is that place names may contain
unique words, not seen much in other corpora because they
are relevant in establishing an identity for the place. Mean-
while, the presence of these unique words in addresses is
unusual. As a result of that, training an address embedding
on top of our dataset does not yield better results while im-
posing an additional computation step.

After producing sequences of embeddings for names αPi

and addresses β Pi - with every embedding vector {α,β}Pi
j ∈

Rm - for places Pa and Pb respectively, the encoder passes
them through a siamese bidirectional GRU [7] layer. Thus,
our network contains two GRUs: GRUa and GRUb, with a
shared number of dimensions l, weights, and parameters.
Embedding sequences for place Pi are passed through GRUi
both in order and in reverse order, and the concatenated hid-
den states from the last GRU cells for each ordering are used
as output.

Hence, GRUi(α
Pi) produces name word embeddings ePi

nw

∈ R2l and GRUi(β
Pi) produces address word embeddings

ePi
rw ∈ R2l . Finally, ePi

nw and ePi
rw are concatenated to form the

place word level embedding ePi
w ∈ R4l .

3.2 Character Encoder

The character-level encoder aims to build a character-based
representation ePa

ch for Pa and ePb
ch for Pb for a given pair: Pa

and Pb. Usage of this type of encoder adds resilience to nor-
malization errors and edge cases encountered with words,
such as International and Intl.; HulaHoop and Hula Hoop.

Given places Pa and Pb, their names nPi and addresses
rPi are first transformed into indexed padded character se-
quences of size Sch

n for names and Sch
r for addresses. Akin

to the word encoder, we use two separate embedding lay-
ers for name and address characters, producing embeddings
of m dimensions. Both layers are initialized with random
weights, which lets the character encoder receive each place
pair’s indexed sequences as input.

Afterwards, the sequence of name character embeddings
ΦPi and address character embeddings Ψ Pi - with every em-
bedding vector {φ ,ψ}Pi

j ∈ Rm - for places Pa and Pb re-
spectively, are each passed through distinct 1D-CNNs [9],
with the same kernel size k and filters F ∈ Rk×d , but differ-
ent random weight initialization. For the sake of simplicity,
we name the 1D-CNN which processes name characters as
CNNn and the 1D-CNN which processes address characters
as CNNr.

When used with textual data, the 1-dimensional convolu-
tion operations performed by 1D-CNNs may be interpreted
as window-based feature extractors. In addition, they have
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shown to be efficient in dealing with sequences of noisy data
[28,51], and present better time efficiency as character fea-
ture extractors when compared to RNNs due to the larger
sequence length of characters.

Consequently, we have that CNNn(Φ
Pi)=EPi

nch , with EPi
nch

∈ R(Sch
n −k+1)×d , and that CNNr(Ψ

Pi) = EPi
rch , where EPi

rch ∈
R(Sch

r −k+1)×d . These internal representations from the 1D-
CNNs are then passed through a global max pooling layer
which generates the name character embeddings ePi

nch and ad-
dress character embeddings ePi

rch for each place, with ePi
{nch,rch}

∈ Rd . In its final step, this layer performs concatenations
ePi

nch ◦ ePi
rch , i ∈ {a,b} to generate the final character embed-

dings ePa
ch and ePb

ch, with ePi
ch ∈ R2d .

3.3 Category Encoder

Our category encoder deals directly with the category list
c of each place Pi, i ∈ {a,b}. Its goal is generating a cate-
gory level embedding ePi

ct , following the intuition that places
belonging to the same or similar categories have a higher
change of being duplicates than those belonging to dissimi-
lar categories.

Even though places may present their category in their
own names or addresses, e.g. John’s Bar, both the word and
character encoders can be incapable of capturing the nec-
essary latent patterns required in order to discern between
places of different categories. Moreover, some places such
as a sunglass chain store named Chilli Beans may be mis-
leading. Category information, however, is not a standalone
way of detecting duplicate places, and should be seen only
as a way to reinforce certain patterns.

The categories of input places Pa and Pb, which pertain to
a list of 122 pre-defined values, are first transformed into in-
dex sets of a fixed size Sct . These sets are then consumed by
an embedding layer initialized with m-dimensional vectors
for each category, producing the embedding sets Θ Pa and
Θ Pb . After being generated, the embedding sequences Θ Pa

and Θ Pb undergo a global max pooling operation, followed
by an L2 normalization. This pipeline results in embeddings
ePa

ct ∈ Rm and ePb
ct ∈ Rm.

The embedding layer is initialized before training begins
by using the pre-trained word embeddings for place names
mentioned in Section 3.1, as it provides better initial results
than using random initialization. More specifically, for each
word in a category name, their embeddings are summed
and L2-normalized to create an initial embedding space in
which categories with contextually similar words are close.
For instance, given the category hardware store, we con-
struct an initial embedding θhardware store = L2(prehardware+

prestore),θhardware store ∈ Rm, where pre are the pre-trained
word embeddings. We highlight that the aforementioned step

is performed a priori, and does not depend on our network
being trained beforehand.

3.4 Geographical Encoder

The last encoder in our architecture is the geographical one,
whose goal is generating an embedding e<Pa,Pb>

geo for each
pair of places, which encapsulates the properties pertaining
to the geographical distance between them. It operates on
top of the Haversine distance dh between the two places,
which is already a pairwise metric. Duplicate places usu-
ally do not have the same latitude and longitude information
due to the errors described in Section 2, and places closer
to each other should usually have a higher chance of being
duplicates than places which are far apart.

As Xiang et al. [26] show, discretizing real values with
a good subdivision strategy is sufficient for a network to
capture the latent patterns of said values without losing in-
formation. So as to discretize the distances between places,
we firstly calculate the maximum distance amongst all place
pairs in the dataset. By trivially assuming a minimum dis-
tance of 0 meters, we then create B distance buckets by
equal-width discretization. Each bucket represents an inter-
val of distances [bt ,bt+1[, and an embedding layer is ran-
domly initialized for each of those buckets with m dimen-
sions. Finally, for a pair of places Pa and Pb, their distance is
calculated by dh(Pa,Pb), they are attributed to the respective
bucket, and then the geographical encoder outputs a final
embedding e<Pa,Pb>

geo ∈ Rm.

3.5 Affinity Generation

With all of the embeddings e{Pa,Pb}
w , e{Pa,Pb}

ch , e{Pa,Pb}
ct , and

e<Pa,Pb>
geo produced by the encoders for a pair of places Pa

and Pb, PlacERN then proceeds to perform comparisons in
order to learn a similarity metric between the two places.
Before comparing the embeddings, however, the network
performs a merging operation on the embeddings pertain-
ing to a single place - namely every one but the geograph-
ical - to produce an appropriate embedding for each place.
Hence, we form the place embeddings ePi = ePi

w ◦ ePi
ch ◦ ePi

ct ,
with ePi ∈ R4l+2d+m and i ∈ {a,b}.

Next, comparisons between the place embeddings are
performed by a series of operations in a merge layer:

• A concatenation of the two embeddings, ePa ◦ ePb ;
• An element-wise L2 distance between the two embed-

dings, (ePa − ePb)2;
• An element-wise multiplication of the two embeddings,

ePa · ePb .

These results are thus concatenated into a tensor v<Pa,Pb>
me

= ePa ◦ePb ◦ (ePa−ePb)2 ◦ (ePa ·ePb), with the tensor v<Pa,Pb>
me
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∈ R16l+8d+4m. Subsequently, the geographical distance em-
bedding e<Pa,Pb>

geo is concatenated with the merge result since
it already represents a merge operation itself, resulting in
the final merged tensor v<Pa,Pb>

a f f = v<Pa,Pb>
me ◦ e<Pa,Pb>

geo , with

v<Pa,Pb>
a f f ∈ R16l+8d+5m.

Afterwards, the v<Pa,Pb>
a f f tensor is passed through a feed-

forward network of L fully connected layers using the ReLU
activation function [36]. The first of these layers has H0 neu-
rons, and each of the following j ones has H j =

H0
2 j neurons,

where j ∈ [1,L]. For ease of explanation, we name the re-
sults from each of the dense layers as v<Pa,Pb>

j . To mitigate
overfitting, we also add Dropout regularization [47] with a
fixed ratio between each pair of fully connected layers in the
feed forward network.

Finally, the resulting tensor from the last dense layer in
the feed forward network, v<Pa,Pb>

L , is sent to a single neu-
ron layer with a sigmoid activation function. It produces a
probability which represents the likelihood of Pa ∼ Pb. A
threshold tc is then applied to generate a binary classification
result. Summarizing, the final output of PlacERN is defined
by the following equation:

o<Pa,PB> =

{
1 if σ(Wl · v<Pa,Pb>

L +b)≥ tc
0 if σ(Wl · v<Pa,Pb>

L +b)< tc
(1)

where Wl ∈R
1×H0

2L is the final layer’s weight matrix, b is the
layer’s bias, and tc is the decision threshold. The decision
threshold tc may be tuned according to some quality metric.
A final output value of 1 means Pa ∼ Pb, and a value of 0,
otherwise.

3.6 Model Training

To train the model while accounting for the expected high
imbalance factor in the record linkage task, the network min-
imizes the Focal Loss training function [30]. This function
expands the traditional binary cross-entropy one by adding
a modulating factor with a tunable focusing parameter γ .
It leads the model to focus on samples which are present-
ing more error than the others, and reduces the contribution
brought by easier, more abundant samples. Mathematically,
the focal loss of a sample labeled as y ∈ {0,1}, with predic-
tion p, is defined by:

FL(p,y) =

{
−(1− p)γ log(p) if y = 1
−pγ log(1− p) if y = 0

(2)

A class-balanced focal loss based on the effective num-
ber of samples [12] was also analyzed as an option, but
failed to improve results during initial experiments.

3.7 Failed Attempts in PlacERN

Throughout the development of PlacERN, we attempted sev-
eral approaches to build and improve our results that were
met with failure. Thus, this section highlights the most im-
pactful of said failures, in order to help researchers facing
similar issues.

Word Encoder The first failed attempt to highlight is the us-
age of publicly available FastText embeddings [33] for place
names. Due to the unique nature of place names, the pre-
trained embeddings and the out-of-vocabulary generated to-
kens were shadowed by the skip-gram model trained on our
own corpus.

Next, we attempted different architectures of siamese
GRU networks for the word encoder: separate GRUs for
names and addresses, max pooling over GRU hidden states,
and stacked GRUs with skip connections [44]. The increase
in model complexity brought by these approaches, however,
did not proportionally increase our representational power,
which was a trigger for increasing variance.

Another attempt to improve our word level encoder was
using co-attention from Xiong et al. [53], following the in-
tuition that it could be a natural extension of the concept of
core words for places [13]. However, this implementation
lowered our performance, while slowing down the process
of training the network and adding more complexity to the
solution.

Character Encoder Siamese GRU networks were the first
attempt at implementing the character encoder. The greater
length of character sequences, however, imposed a bottle-
neck in the network, increasing training times tenfold, and
did not improve the evaluation metrics. Thus, 1D-CNNs are
used as an alternative, as described in Section 3.2.

Geographical Encoder A possible alternative for inserting
geographical context into a deep network is transporting lat-
itude and longitude pairs to an embedded space which cap-
tures the characteristics of their surroundings. We imple-
mented this approach by grid subdivision and building em-
beddings for each grid, but the region embeddings did not
translate to the duplicate detection case. Some grids also
had insufficient data. We also attempted a sequence encod-
ing approach [51], but the original work uses sequences with
lengths upwards of 50, while ours had a fixed size of 2, and
thus it was unable to provide improvements.

4 Record Linkage Pipeline

To utilize PlacERN in our working system [10], the first
step is generating place pairs from a given dataset. Gen-
erating all possible pairs, however, incurs in a complexity



Linking Place Records Using Multi-view Encoders 7

of O(n2), where n is the size of the places dataset. Thus, a
record blocking [48] step should be performed to reduce the
number of pairs whilst preventing the eager elimination of
true duplicate pairs. In this work, we utilize a MapReduce
[15] blocking step consisting of:

1. A partitioning phase, where the places set is partitioned
into Geohashes [35,38] with a precision of 6 characters,
and all possible pairs are generated inside each Geohash
only;

2. A filtering phase, where a Jaro-Winkler similarity metric
[52] is computed for each pair and a similarity threshold
λ is applied to filter trivial non-duplicates.

The usage of Geohashes as partitioning keys translates
naturally to the MapReduce computation model, and thus
we are able to use distributed computation by means of Apache
Spark [57]. With the record blocking step generating the po-
tential duplicates, PlacERN is then able to be executed for
the purposes of this work. However, the replication factors
encountered in Web-based datasets supersede the pairwise
approach taken, i.e. replicated places may appear more than
two times, and even hundreds of times [13]. To account for
this, our pipeline employs a simple graph-based approach
[11] to detect connected components among the pairwise
results from PlacERN and extend the results to replication
tuples of arbitrary sizes.

This proposed pipeline has been used and evolved in
a production environment, processing tens of millions of
records in a recurrent basis. Moreover, the same models uti-
lized in the pipeline, such as PlacERN, are able to be ported
to an API for solving the linkage problem in real-time envi-
ronments [10].

5 Data Overview

The dataset utilized in this work is a snapshot, created circa
2018 both by scraping structured data, such as schema.org6,
from the Web and by manual insertions from an internal
company team. This dataset, referred to as PlacesDB from
here on, contains 28,467,486 place records with multiple
languages and characteristics.

Roughly 43.28% of all places in PlacesDB are located in
the US and 16.82% in Brazil, and the primary languages in
those countries (English and Portuguese, respectively) present
different linguistic features. Because of that, we further par-
tition PlacesDB into a dataset of places from the US, PlacesUS,
and a dataset of places from Brazil, PlacesBR.

The attribute coverage for these datasets is 100% for the
name and geo location fields, since they are obligatory. For
PlacesUS, 97.50% of places contain an address, 70.01% con-
tain categories, 7.33% contain a homepage, and just 0.55%

6 https://schema.org/

contain a parent place. Meanwhile, for PlacesBR, 99.89% of
places contain an address, 67.83% contain categories, 2.60%
contain a homepage, and just 1.07% contain a parent place.
We are then able to conduct experiments taking missing data
into consideration. The categorical and geographical distri-
butions of both datasets are analyzed to assert that they are
not biased toward specific categories or locations.

5.1 Generating Pairs using Blocking

From these sets, we first generate pairs of places to evalu-
ate PlacERN. To avoid generating a dataset with a quadratic
size in regards to the number of records in PlacesUS and
PlacesBR, we utilize the same blocking algorithm described
in Section 4 on top of PlacesUS and PlacesBR. To select
the λ Jaro Winkler similarity threshold used in the filtering
phase of the blocking algorithm, we divide the place pairs
from both place datasets into similarity buckets of range 0.1
from 0.4 to 1.0 and manually inspect 100 random pairs from
each of them. Our goal was to find a threshold low enough
to avoid excluding too many pairs indicating a duplication,
and high enough to clean up obvious non-duplicates. Thus,
these inspected pairs serve as representatives in a manual
analysis only. By only finding duplicates in samples from
buckets whose similarity is higher than 0.8, we set λ = 0.8
to avoid hurting recall.

5.2 Labeling

We generate labels indicating duplication or non-duplication
for each of the place pairs produced by the blocking algo-
rithm. Albeit usually generating a higher quality of labels,
manually labelling all of the generated samples is infeasi-
ble given our available resources. Crowdsourced approaches
through online platforms, on the other hand, present imped-
iments in the form of a lack of support for the Portuguese
language and higher error rates than a structured curatorship
process [54].

In light of that, we first utilize the phone number at-
tribute, present in 27.04% of places in PlacesBR and 91.01%
of places in PlacesUS, to generate labels for each pair, ex-
cluding it from our model to avoid leakage. This follows
findings that a reasonable number of the place pairs which
share a phone number represent duplications in our datasets.
Hence, place pairs with phone numbers are selected from
each set, have their special digits such as “+” and “-” re-
moved, and then are compared through exact match to pro-
duce a positive or negative label.

These initial labels generated through phone match, how-
ever, are not completely precise: two places in the dataset
may have different phone numbers and still be duplicates,
due to a lack of constant updates to their source web pages,
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and two places may also have the same phone number and
not be duplicates. We notice that this second case tends to
happen when places belong to a chain store, which, in many
cases, have a fixed number for servicing customers in all
stores. These issues, alongside the low attribute coverage in
the Brazilian dataset and the Web in general, are impedi-
ments to using exclusively phone numbers to match places.

Thus, to improve the label quality, we manually curate
several samples of these results, fixing erratic patterns such
as different places inside a mall or belonging to the same
chain store, among others. This laborious process generates
the PairsUS and PairsBR silver-truth sets, whose characteris-
tics are displayed in Table 1.

Table 1: Characteristics of our PairsUS and PairsBR silver
truth sets.

Data
set

#pairs #places #positive
pairs

#negative
pairs

PairsUS 3,009,428 2,267,885 325,809 2,683,619
PairsBR 597,452 365,092 24,892 572,560

Both sets preserve a low ratio of duplicates to non du-
plicates. Also, we note that the PairsBR set has almost three
times the skew (24) of the PairsUS one (8.24). Since the ex-
act ratio of duplicates in a database varies greatly over lo-
cations and over time, this difference in skew allows us to
train and evaluate models under different data quality sce-
narios. Moreover, the general differences in both sets make
our evaluation broader.

To expand our experiments, we searched for additional
ground truth sets, both pairwise and containing places only.
However, all datasets we found posed some kind of issue
which made it impractical or not possible to use. For in-
stance, the labelled datasets from Dalvi et al. [13] and Yang
et al. [56] are both proprietary. Readers are encouraged to
refer to Cousseau (2020) [10] for further details on this pro-
cess.

6 Experiments

So as to assess the quality of PlacERN, we compare it with
preliminary approaches and baseline methods. Both of our
silver-truth sets are split into training, validation, and test
sets, using a fixed split of 70%, 20%, and 10%, respectively,
preserving the class distribution in each of them. Follow-
ing recommendations from Ng (2019) [37], we also sample
some entries from the validation set and use them as our
Eyeball validation set, which allows us to probe for error
patterns in our models’ results so as to look for data insights.

6.1 Runtime Environment

The experiments for deep neural networks are executed in
machine instances provided by Google Colab7, containing
13Gb RAM, an Intel Xeon CPU, and a mix of NVidia K80,
T4, P4, and P100 GPUs. Meanwhile, the CPU-bound tests
make use of an instance with 16Gb RAM, and an Intel Core
i7-7500U CPU. In addition to that, any steps requiring dis-
tributed computation by means of Apache Spark [57], such
as the record blocking one, utilize 7 AWS m4.xlarge in-
stances, each having 16Gb of memory and 4vCPUs.

6.2 Performance Metrics

Since the problem of detecting duplicate places suffers from
class imbalance, generally and in the PairsBR and PairsUS
datasets, the chosen metrics need to account for that. Ergo,
each model is evaluated on the task of detecting place dupli-
cations according to three main metrics.

Gini Coefficient The first of these metrics is the normal-
ized Gini coefficient [20,18,14]. It attempts to measure how
far apart are the probabilistic results from random guessing,
operating thus directly on the probabilistic results from the
models. Its normalization is performed by dividing the re-
sulting Gini coefficient by the Gini coefficient of the ground
truth set, returning then a result between 0 and 1 (best case).

F-score The second is the Fβ=0.5 score. The β coefficient
for the F-score is set as 0.5 to account for the fact that pre-
cision outweighs recall in our use case, since place pairs in-
correctly classified as duplicates may lead to possibly unre-
coverable states in a database.

Precision-recall Curves Finally, to provide insights on each
model’s capability of being tuned according to either preci-
sion or recall, we also present Precision-Recall curves and
the area under them (AUC) [43]. They show the relationship
between the precision and recall metrics for different classi-
fication thresholds.

We also provide the time consumed by each model dur-
ing training and execution. These times highlight the capa-
bility of each model to be fitted into an end-to-end produc-
tion pipeline or real-time service.

6.3 Baseline Methods

In order to evaluate PlacERN, we compare it against both
previous approaches that deal with the same problem and
our own supervised learning baselines trained on top of an
engineered set of pairwise features.

7 https://colab.research.google.com
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Previous Approaches In these experiments, we utilize two
baselines [13,56]. According to our literature review, these
are the most prolific works dealing directly with deduplica-
tion of places Web data.

• Dalvi et al. (2014) [13]: this approach makes use of a
Expectation-maximization algorithm to build probabil-
ity distributions for words of a place’s name, splitting
them into core and background words. The core words
are then used to compare if two places are duplicates.
The probability of a place pair representing duplicate
places is calculated directly by the core word compar-
ison probability derived in their work. The authors also
propose a dynamic programming algorithm to take edit
operations into account during comparisons, but the pro-
vided pseudocode seems to be non-functional: it seems
to cause an infinite recursion;

• PE - Yang et al. (2019) [56]: this work proposes an un-
supervised learning step to generate place embeddings.
Then, an MLP is trained on top of the place embeddings,
and is gradually improved with: a novel contrastive loss
function (PE), batch-wise hard-sampling (PEH), source-
based attentive training (PEHA), and a label denoising
technique (PEHAD). Our implementation adapts the PE
model, outputting the euclidean distance between places
in the metric space, whose complement is then inter-
preted as the positive class probability. We were unable
to implement the full PEHAD model, partially due to ei-
ther missing details or incompatibility with our datasets.
Furthermore, we contacted the authors regarding the mo-
del parameters, who recommended a search on a given
range of values for the negative sampling ratio in the
smoothing step, among others.

None of these works, however, provide out-of-the-box
implementations for their methods, so we implement our
own versions. For [56], all steps are implemented with Keras
2.3.1 and Tensorflow 1.15.2, with the aid of gensim [42] for
the unsupervised steps. In appendix (§ 9.1), we detail the
process of choosing the hyperparameters of both solutions.

Supervised Models As a preliminary attempt to tackle the
linkage problem for place records, we engineer a set of pair-
wise features and train supervised models on top of them.
These features are:

• A Soft TF-IDF [8] between place names (name soft
tfidf);

• A Soft TF-IDF between addresses (address soft tfidf);
• The Haversine distance dh between the pair of places;
• The difference between numeric address sub thorough-

fares (sub thoroughfare diff);
• A Jaccard similarity between categories (categories

jaccard);

• A Jaro-Winkler [52] similarity between the core word
of each place’s name (core word jaro). Our concept of
core word for each place name is the one with the maxi-
mum inverse document frequency among all places, that
also adheres to low frequency thresholds in the place’s
Geohash, i.e. a word which is relevant both globally and
locally;

• Three one-hot categorical features ∈ R4 indicating the
full absence, partial absence, non-match, or match be-
tween homepages (homepage matches), parents (siblings
match), and id with parents (parent place match).

Each pair of places is then represented as a row vector
v ∈ R18, which is utilized to train a Random Forest model
(PRF) [5] and a LGBM model [27] (PLGBM). Each model
returns a probability of a pair being a duplicate s∈ [0,1], and
we experimentally define a classification threshold tc to dic-
tate which results o<Pa,Pb> are classified as duplicates Pa ∼
Pb, with s ≥ tc, and which are classified as non-duplicates,
with s < tc. Further details regarding the selection of tc and
the hyperparameters of PRF and PLGBM can be found in
appendix (§ 9.2).

The PRF model is implemented using the scikit-learn
and pandas libraries [40,49], while PLGBM uses the Light-
GBM package [27]. Meanwhile, the feature generation step
is implemented in Scala with Apache Spark for distributed
computation.

6.4 Setup for PlacERN

PlacERN is implemented with Keras 2.3.1 and Tensorflow
1.15.2, with gensim for the pre-trained name embeddings.
We utilize the ReLu activation function [36] in the feed-
forward network layers. Glorot uniform initialization [21]
is utilized for the character and geographical encoder em-
bedding layers, while the embedding layers of the word and
category encoders are initialized with pre-trained embed-
dings, as mentioned in Section 3. For the CNN layers in the
character encoder and the RNN layers in the word encoder,
the hyperbolic tangent is utilized as an activation function.
Training is performed in batches with the ADAM optimizer
[29]. Details on its hyperparameters are found in appendix
(§ 9.3).

6.5 Hyperparameter Tuning

Hyperparameters are tuned with the validation set in regards
to the normalized Gini coefficient first, mostly through a
Bayesian optimization process. Then, the probabilistic out-
puts are transformed into binary labels by applying a thresh-
old tc, chosen by optimization of the Fβ=0.5 score in a sep-
arate grid search. The full optimization process and the hy-
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perparameters for each model and each dataset are described
at depth in appendix (§ 9).

6.6 Results

The results comparing each of our models with the baseline
methods in the PairsBR and PairsUS test datasets are dis-
played in Table 2. Figure 2 expands on that by displaying
plots of the precision-recall curves for all applicable models
on both datasets.

As presented in Table 2, PlacERN obtains the best values
of Fβ=0.5, normalized Gini score, and AUC in both datasets.
More specifically, its Fβ=0.5 for PairsBR and PairsUS are
0.609 and 0.809, respectively, while its normalized Gini co-
efficients are 0.929 and 0.959. By breaking up the Fβ=0.5
score into its precision and recall components, the results
show that PlacERN also reaches the best precision in PairsBR
(0.617) and the best recall in PairsUS (0.712). By comparing
PlacERN with PLGBM, which has the second-best results
in both datasets in terms of Fβ=0.5, we see relative gains
upwards of 7.14% in the PairsBR dataset and 5.61% in the
PairsUS dataset.

In PairsUS, PlacERN has an AUC of 0.857 against 0.816
from PLGBM and 0.775 from PE. Meanwhile, for PlacesBR,
PlacERN has an AUC of 0.606 against 0.552 from PLGBM
and 0.396 from PE. Analyzing the AUC alongside Figures
2a and 2b further shows that PlacERN offers an improve-
ment over its competitors in almost all precision-recall ra-
tios, that is: it is able to be more thoroughly tailored to at-
tend specific demands of precision or recall ratios. For in-
stance, fixing precision at 0.8, PLGBM has a recall close

Table 2: Comparison of all models on test samples from
PairsBR and PairsUS.

Dataset Model Precision Recall Fβ=0.5 Gini AUC

PairsBR

Dalvi et
al.
(2014) [13]

0.300 0.240 0.285 0.601 0.204

PE -
Yang et al.
(2019) [56]

0.590 0.246 0.462 0.778 0.396

PRF 0.498 0.581 0.513 0.915 0.498
PLGBM 0.616 0.412 0.560 0.924 0.552
PlacERN 0.617 0.542 0.600 0.929 0.606

PairsUS

Dalvi et
al.
(2014) [13]

0.750 0.240 0.526 0.693 0.568

PE - Yang
et al.
(2019) [56]

0.837 0.547 0.757 0.896 0.775

PRF 0.844 0.543 0.760 0.930 0.795
PLGBM 0.801 0.652 0.766 0.938 0.816
PlacERN 0.837 0.712 0.809 0.959 0.857

(a) Precision-recall curves in PairsBR.

(b) Precision-recall curves in PairsUS.

Fig. 2: Overlapping precision-recall curves in PairsBR and
PairsUS for all possible models.

to 0.7 while PlacERN reaches a value close to 0.8 in the
PairsUS dataset. These results confirm that PlacERN is able
to better capture the place features with its encoders, inde-
pendently of the size of the training dataset or its imbalance
factor.

However, by analyzing the precision-recall curves, we
see that PLGBM has equivalent metrics to PlacERN at some
points. Furthermore, PLGBM is able to constantly surpass
the methods from [13] and [56] in all evaluated metrics.
Summing these results with the approach taken by PLGBM,
which is quicker to implement, they confirm that PLGBM,
while being an overall worse choice than PlacERN for the
record linkage task, may be a good alternative for a quick
and competitive solution for the problem. The results also
show that PLGBM is better able to handle class imbalance
with fewer data points than PRF, since PRF lags behind
PLGBM in PairsBR but not so much in PairsUS.

Finally, Table 2 shows that both previous approaches
reach lower Fβ=0.5 and normalized Gini coefficient values
when compared to our preliminary models and PlacERN it-
self, with PE surpassing the heuristic approach of [13] in
every evaluated metric. According to these precision-recall
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curves for the PairsBR dataset, the PE model from [56] has
consistently lower metrics than all of our proposed solu-
tions. Namely, we observe a difference of 0.151 in the nor-
malized Gini coefficient when comparing PlacERN, the best-
scoring model, with PE in the PairsBR dataset, and 0.146
when comparing PLGBM to PE in the same set. Comparing
Fβ=0.5 further exacerbates this pattern.

It is important to note that the normalized Gini coeffi-
cient of PE in the PairsUS set is only 0.063 points below
the best performer’s value, with its Fβ=0.5 score being 0.052
lower. Given that its performance on PairsBR was lacklus-
ter, this may indicate that the PE model, without the addi-
tional modifications proposed by its authors, is unable to
handle class imbalance as well as the other models, and re-
lies on a large dataset to be more effective. We acknowledge,
however, that the full PEHAD model proposed by Yang et
al. [56] displays a significant improvement over PE in their
own work, so perhaps a full-blown implementation might
have a better performance in this dataset than the other mod-
els.

We also note that PE is measured in its original work in
regards to a different novel evaluation metric, under differ-
ent scenarios. Meanwhile, the work from Dalvi et al. [13]
is originally evaluated on a smaller, manually curated, and
more balanced dataset. This might explain its poor perfor-
mance on our evaluation.

Ablation Study In order to verify the impact of each en-
coder in the PlacERN model, we begin from a basic model
consisting only of the word encoder (WE). Then, we gradu-
ally add other modules: the character encoder is added (WE
+ CHE), then the geographical encoder is added (WE +
CHE + GE), and finally the category encoder is added, com-
posing the final model PlacERN. The order of ablations fol-
lows the feature importance values obtained from studying
our other models, as Section 6.6 shows. Each of these mod-
els has its parameters optimized by the same process applied
to PlacERN. The results for this ablation study in all datasets
are presented in Table 3.

From the results, we see that the full model, PlacERN,
achieves the best Fβ=0.5 and normalized Gini scores in both
datasets. Each encoder adds to the model’s performance,
making the full model present an increase of 0.038 in the
Fβ=0.5 score and 0.029 in the normalized Gini coefficient
when compared to WE only, in the PairsBR dataset.

The most impact brought by the addition of an encoder
may be seen in the WE + CHE version, where adding the
character encoder boosts the Fβ=0.5 by 0.023. These results
are even less noticeable in the PairsUS set, our main sup-
position being the larger amount of training data. The fact
that none of the encoders display a considerable impact on
the score by itself points to the fact that the word encoder
is a very powerful classification tool by itself, and each of

Table 3: Results of the ablation study for the PlacERN
model.

Dataset Model Precision Recall Fβ=0.5 Gini

PairsBR

WE 0.577 0.508 0.562 0.9
WE +
CHE

0.588 0.573 0.585 0.92

WE +
CHE +
GE

0.6 0.557 0.591 0.921

PlacERN 0.617 0.542 0.600 0.929

PairsUS

WE 0.822 0.694 0.793 0.946
WE +
CHE

0.826 0.678 0.791 0.95

WE +
CHE +
GE

0.849 0.668 0.805 0.956

PlacERN 0.837 0.712 0.809 0.959

the additions to the model serves to improve it in some edge
cases.

Feature Importance Study To study the importance of fea-
tures in PRF and PLGBM, Shapley Additive Explanations
[31] (SHAP) are conducted on their feature set. In this way,
we expect to infer the impact of each place attribute and
transfer this knowledge to the development of other mod-
els. SHAP is a game-theoretic approach which assigns an
importance value to each feature for a particular prediction,
and is able to aggregate those importance values to produce
a general analysis on the effect of each feature in the model.

Figure 3 presents the SHAP summary plots for each of
the features in the PRF (a) and PLGBM (b) models in the
scope of validation data from PairsBR. The one-hot encoded
features are broken up into their respective components cat-
egorical components. Each dot represents a sample, and a
high absolute SHAP value indicates that a feature has more
influence on the model classification, with dots in red repre-
senting higher feature values and dots in blue representing
otherwise. In the Figure, features are ordered from top to
bottom according to the sum of their absolute SHAP values
for all samples. Note that the scale bar on the right refers to
the color (feature value) of the predictions alone, and does
not relate to the ordering of features in the y axis.

We see that features related to names and addresses have
the most overall impact on the models. which in turn in-
dicates that the most important information to detect repli-
cated places are present in their names and addresses, with
the distance between them being a good additive. The dis-
tance feature, as expected, is inversely correlated with posi-
tive samples, i.e. lower values push the model towards non-
duplicates. The magnitude of the remaining features’ influ-
ence on the model is much lower than their counterparts’.
This analysis of the SHAP values leads us to focus the de-
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(a) SHAP sumary for PRF.

(b) SHAP summary for PLGBM.

Fig. 3: Summary plots of SHAP values for PRF and PLGBM
in PairsBR.

velopment of other models on place names, addresses and
geographical coordinates, which is the approach taken in
PlacERN.

Training and Execution Times To analyze the feasibility
of fitting the models into a full record linkage pipeline, such
as the one proposed in Section 4, we calculate the training
and execution times for each model in Table 4, without ac-
counting for pre-processing or post-processing steps. Ana-
lyzing training time is relevant to our use case because place
databases are often dynamic, so recurrent training guaran-
tees the quality of results over time. In a similar way, execu-
tion time matters for real-time use cases.

Whilst PlacERN is the best performer in both datasets
in terms of classification scores, it takes 3149 seconds to
train in the PairsBR dataset. When compared to PLGBM,
for instance, its training time is roughly 397 times higher.

Table 4: Training and execution times for all models.

dataset Model Training
time (s)

Execution
time (s)

PairsBR

Dalvi et al.
(2014) [13]

7879.00 4.83

PE - Yang et al.
(2019) [56]

8598.00 2.97

PRF 27.23 0.31
PLGBM 7.93 0.19
PlacERN 3149 80.83

PairsUS

Dalvi et al.
(2014) [13]

131610.00 25.44

PE - Yang et al.
(2019) [56]

130742.00 9.40

PRF 364.26 1.56
PLGBM 32.05 1.28
PlacERN 542.00 232.42

Similarly, the training times of the model from [13] and the
PE model stand out as being at least one order of magni-
tude higher than the other models’, especially in the PairsUS
dataset, where they reach upwards of 36 hours to train. It is
relevant to note that most of the training time for PE comes
from the embedding smoothing process, which is an active
part of the model and relies on the construction of a places
graph. This process is taken into account because, in a real
scenario, these smoothed embeddings for each place would
need to be re-generated to account for new entities and tem-
poral changes in past ones. While training time does not dis-
qualify a model for usage in a production environment, any
researcher or engineer aiming to use it would have to dis-
pense more resources to do so.

In regards to execution time, PLGBM takes only 0.19
seconds to classify the 60,925 test samples from PairsBR
and 1.28 seconds to classify the 307,017 test samples from
PairsUS, surpassing every other evaluated model. More no-
ticeably, PlacERN takes longer than PLGBM, PRF, and each
baseline method to execute, without using batch predictions.
This points to the fact that PlacERN is more suited to a
batch-wise or off-line case than a real-time one. These re-
sults also do not account for concurrency in real-time ser-
vices, which may present itself as a bottleneck. In that re-
gard, the LGBM library offers out-of-the-box concurrency
and distribution support.

Discussion By considering the results presented in this sec-
tion, one can conclude that PlacERN is able to effectively
detect duplicate places, outperforming all baseline methods
in all tested datasets. PLGBM also obtains better results than
the baseline methods, and is extremely fast to train and exe-
cute, proving itself as a good alternative for solving the link-
age problem in real-time services with latency constraints.

Furthermore, the experiments attest that the place’s name
and address information are the two most important fields
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to extract relevant information from, in the entity matching
task. Latitude and longitude values also serve as a good way
to improve results. Following that, we find that the word
encoder for names and addresses in PlacERN is already a
powerful duplicate detection tool by itself. The additional
encoders further increase the model’s performance by small
increments, making it easier to detect edge cases. Given the
impact which classification errors in the record linkage task
may cause in a database, each of these increments is a rele-
vant addition.

7 Related Work

Works in the field of record linkage for place entities may
be divided into two categories, based on how they approach
the problem: (i) traditional approaches and (ii) deep learn-
ing approaches. This section discusses related works in these
categories.

7.1 Traditional Approaches

The solution developed by Dalvi et al. [13] approaches the
problem of detecting duplicate places by using information
from place names and geo locations to build a name model
and a spatial context model. The main concept behind the
work is that places names are sufficiently represented from
a set of core words, the remaining ones being background
words. An Expectation-maximization algorithm is proposed
to calculate a probability distribution of core words and a
probability distribution of back-ground words. The back-
ground probability distribution is additionally calculated for
each tile in a grid subdivision to account for spatial context.
Finally, the work computes the probability of two places be-
ing duplicates by using the probability of the core word set
from both of them being equal. This matching step is ex-
panded by a dynamic programming algorithm to take string
edit operations into account.

Another work [3] studies the problem of linking place
records from different Location Based Systems (LBS) in
a broad scope. The approach proposes a spatial blocking
method to detect potential pairs, a similarity algorithm to
match places, and a data fusion algorithm for the detected
duplicates. The similarity algorithm uses a probabilistic ap-
proach to combine multiple traditional similarity metrics be-
tween place pairs to output a classification result.

Deng et al. [17] tackle the record linkage problem for
two different data sets obtained from Chinese LBS. Simi-
larly to [3], they use a multi-attribute matching strategy to
classify duplicate places, having access to the name, ad-
dress, geo location, and category of each place. The core
of their work, on the other hand, resides in the combina-
tion strategy for these similarities, using an improved ver-

sion of the Dempster–Shafer (D-S) evidence theory [16,46].
The textual similarity strategies proposed by their work are
tailored towards Chinese places, and the category similar-
ity assumes knowledge and manual fusing of the category
schema from each source.

7.2 Deep Learning Approaches

The work of Yang et al. [56] draws inspiration from previous
solutions for entity resolution and person re-identification
tasks in different domains to create unsupervised represen-
tations of place entities from the Facebook Web service, not-
ing that the user-facing nature of the service leads to place
replications. They name this step as unsupervised feature
generation, and utilize places’ names, addresses, locations,
and categories to do so.

This step utilizes FastText [4,33] to create name embed-
dings, using a corpus of 1.9 trillion words from public Face-
book posts in the last 10 years, and a skip-gram Word2Vec
[34] model trained on top of words from place addresses to
create address word embeddings. Next, they incorporate cat-
egory and geo location information by first applying a grid
subdivision, then creating a places graph where places in the
same grid or belonging to the same category are connected,
and finally smoothing this graph by training a skip-gram ob-
jective function with negative sampling [41].

The results from this step are passed through an MLP
network which uses a novel pairwise contrastive loss, an
adapted version of a triplet loss. This model, named PE,
is further improved by batch-wise hard sampling (PEH), a
source-based attentive training strategy (PEHA) and cluster-
based label denoising (PEHAD) [24]. The batch-wise hard-
sampling uses a secondary distance metric, which is men-
tioned but apparently not explained in their work.

Their approach is similar to ours in many aspects, since
our PlacERN model also leverages embeddings to build vec-
tor representations for places using the same attributes. On
the other hand, our solution is built from the ground up with
a focus on detecting duplicate places, and, as such, the net-
work generates embeddings in a pairwise and supervised
manner. Furthermore, the places graph generated during the
embedding smoothing is costly to build and maintain, and
usage of the text corpus of 1.9 trillion words is inaccessi-
ble to most researchers and companies alike, both due to its
scale and its proprietary aspect.

Another work [44] tackles the similar problem of to-
ponym matching. To better handle transliterations and se-
mantic changes, they propose a deep architecture with two
layers of siamese GRU networks processing character se-
quences for two place names, generating an embedding for
each place, and merging them through a series of operations.
This result is passed through a feed-forward network with
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Dropout regularization [47] and a final sigmoid layer pro-
duces a probabilistic output indicating if the two toponyms
match.

8 Conclusions and Future Work

We present PlacERN, a deep neural network to detect du-
plicate places, utilizing four different encoders to capture
multi-level information about places and build an affinity
between pairs. We further show how PlacERN is included
in a working system by the proposal of a linkage pipeline.
In addition to that, a set of pairwise features is engineered
to train two supervised learning models, PRF and PLGBM.
This feature set is studied in terms of its importance to drive
the development of PlacERN. PlacERN is evaluated on top
of two imbalanced industrial datasets, surpassing the per-
formance of baseline methods. We consider relevant topics
for future work to be the exploration of self-attention in the
word and character encoders, and employing active learn-
ing to improve the proposed model due to the hardships of
building a golden truth set.

9 Appendix: Hyperparameters

To improve reproducibility of our results, we describe in this
appendix the optimization process utilized for the previous
approaches, for our supervised models, and for PlacERN.
We also provide the best hyperparameter values achieved
during optimization. The value ranges used as input to the
optimization algorithms may be found in [10].

9.1 Previous Approaches

We utilize Bayesian optimizations from Optuna [1] to tune
the parameters of PE [56], and a grid search for the model of
Dalvi et al. [13], both using validation data. The EM algo-
rithm from [13] is executed for 10 iterations in PairsBR and 5
iterations in PairsUS, while PE [56] runs for 100 Optuna tri-
als in PairsBR and 50 trials in PairsUS, using a median pruner
after 5 warm-up trials and 3 warm-up steps. Geohashes are
utilized as a means for the creation of tiles in both methods.

The optimal values obtained for the hyperparameters of
[13] in the PairsBR dataset are: λ = 0.0, Geohashprecision=
6, α = 0.3, and tc = 0.5. For the PairsUS: λ = 0.0, Geohash
precision = 6, α = 0.9, and tc = 0.5.

Meanwhile, the embedding smoothing process from PE
runs for 10 full epochs and uses 100,000 smoothing random
walks with a fixed length of 10, a minimum frequency of 1,
and a half window size of 5. The training batch size is fixed
as 512 for PairsBR and 1024 for PairsUS, and the MLP uses

3 feedforward layers. The best values for the tuned hyperpa-
rameters of PE in the PairsBR dataset are: α = 0.4, smooth-
ing negative sampling ratio = 20, neurons = 512,128,128,
tc = 0.75. For the PairsUS set: α = 0.5, smoothing negative
sampling ratio = 5, neurons = 512,128,128, tc = 0.75.

9.2 Supervised Baseline Models

Both models (PRF and PLGBM) are tuned by Bayesian op-
timization, using Optuna for 100 trials in the scope of the
PairsBR and PairsUS validation data sets. The description
of the hyperparameters for each model follows the parame-
ter names from their respective libraries, with any value not
shown assuming the default value.

PRF utilized the class weight parameter set to balanced
and the oob score parameter set to True in both sets. The
optimal tuned hyperparameter values for PRF in the scope
of PairsBR are: n estimators = 110, max features = log2,
max leaf nodes = 150, min samples split = 3, tc = 0.9. In
the PairsUS set: n estimators = 150, max features = sqrt,
max leaf nodes = 150, min sample splits = 5, tc = 0.9.

The PLGBM model utilizes 10 early stopping rounds for
100 iterations in each trial, using a fixed class weight value
of balanced. The optimal values for its hyperparameters in
PairsBR are: lambda l1 = 1.247 · 10−8, lambda l2 = 0.659,
num leaves = 95, feature fraction = 0.5, bagging fraction
= 1.0, bagging freq = 0, min child samples = 5, tc = 0.5. In
the PlacesUS set, the values are: lambda l1 = 1.132 · 10−8,
lambda l2 = 0.247, num leaves = 256, feature fraction =

0.62, bagging fraction = 1.0, bagging freq = 0, min child
samples = 20, tc = 0.5

9.3 PlacERN

PlacERN is implemented with L = 3 feed-forward network
layers, the first of them having H0 = 256 neurons. Regard-
ing the sequence lengths noted in Section 3, we use the 90th
percentile of lengths for each field to extract Sw = 5, and
Sct = 3 for both sets, Sch

n = 42,Sch
a = 32 for PairsBR, and

Sch
n = 26,Sch

a = 23 for PairsUS. We use B = 100 distance
buckets in the geographical encoder, and m = 100 dimen-
sions for the embedding layers.

To use the pre-trained FastText embeddings in our model,
their dimensionality is reduced to 100 beforehand by means
of a Principal Component Analysis [39] dimensionality re-
duction script8. In order to improve reproducibility, we also
fix the random seeds as 6810818.

The model is tuned by Bayesian optimization from Op-
tuna for 50 trials on top of the PairsBR validation data set

8 https://github.com/facebookresearch/fastText/

blob/master/reduce_model.py
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and 20 trials in the PairsUS one, with a median pruner after
3 warm-up trials and 1 warm-up step. An additional early
stopping callback with a patience of 2 epochs and a mini-
mum change of 10−3 is also added as insurance against de-
generate cases not detected by the median pruner. A batch
size of 64 for PairsBR and 1024 for PairsUS is utilized dur-
ing training. The best tuned hyperparameter values for Plac-
ERN and its ablated versions in both datasets are described
in Table 5.

Table 5: Hyperparameters of PlacERN and its ablations,
with the best values obtained in each data set.

Data set Hyperparameter PlacERN WE WE+
CHE

WE+
CHE+
GE

PairsBR

learning rate 0.001 0.005 0.001 0.002
focal loss γ 1.5 2.0 2.0 0.0
dropout rate 0.15 0.05 0.1 0.35
GRU
dimensions l

150 100 200 200

CNN filters d 512 - 128 512
CNN kernel
size k

4 - 5 4

tc 0.5 0.5 0.5 0.4

PairsUS

learning rate 0.001 0.001 0.001 0.001
focal loss γ 2.0 2.0 1.0 1.5
dropout rate 0.2 0.25 0.05 0.15
GRU
dimensions l

100 150 150 100

CNN filters d 128 - 512 256
CNN kernel
size k

3 - 4 5

tc 0.55 0.55 0.65 0.6
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