
Improving Search Quality with
Automatic Ranking Evaluation and Tuning

Ları́cia Cavalcante1,2, Ullayne Lima1,2, Luciano Barbosa1,
Ana Luiza Gomes2, Éden Santana1, Thiago Martins1

1Centro de Informática, Universidade Federal Pernambuco, Recife – PE – Brazil

2 VTEX, Rio de Janeiro – RJ – Brazil

{laricia.mota, ullayne.lima, ana.motta}@vtex.com.br

{luciano, eeas, tasm2}@cin.ufpe.br

Abstract. Search is a common feature available in document-based applica-
tions. It allows users to find information of interest easier. Two essential as-
pects for building an effective search is to evaluate the ranking quality and be
able to efficiently tune it based on this evaluation. In this paper, we present
our Automatic Ranking Tuning and Evaluation System (ARTES) that measures
the ranking performance based on users’ clicks on search resulting pages and
automatically tunes the search ranking function by applying a Bayesian Opti-
mization algorithm. Our system is integrated with Elasticsearch, a widely-used
search engine, which provides the search functionality. The whole solution is
currently used by our customer support platform to help users effectively find
relevant information, as our experimental evaluation confirms.

1. Introduction

Document retrieval is a key activity in our daily digital experience because it allows users
to find relevant content in large document collections easier. Examples of this task are
search on emails, social media messages, personal computer content (desktop search) and
web pages (web search). Regarding web usage, for instance, it is estimated that more than
90% of online activity starts with a web search1.

Many document retrieval engines (e.g., Elasticsearch2, Solr3 and Terrier4) are
available to ease the development of the search functionality over a collection of doc-
uments. It might happen, though, that when one builds this functionality, the search
quality is overlooked or not properly assessed, and the selection and adjustment of the
ranking score function in the engine is made ad-hoc. In this work, we tackle these issues
by building a solution, which we name Automatic Ranking Tuning and Evaluation Sys-
tem (ARTES), that: (1) evaluates the ranking quality using a well-established information
retrieval metric (NDCG [Baeza-Yates et al. 1999]); and (2) efficiently tunes the ranking
function by applying a Bayesian Optimization algorithm (Tree-structured Parzen Estima-
tor [Bergstra et al. 2011]). We use Elasticsearch (ES) as our search engine since ES has

1https://www.imforza.com/blog/8-seo-stats-that-are-hard-to-ignore/
2www.elastic.co
3https://lucene.apache.org/solr/
4http://terrier.org/



been the most popular search tool in the market for many years5. We integrate, hence,
ARTES with ES allowing users to find relevant information available in our customer
support platform. Although ARTES has been implemented in this specific configuration,
it is generic enough to work in different instances of optimization algorithms and search
engines.

In the experimental evaluation, we assess the search quality of our solution and
compare it with other strategies. The results show that ARTES can provide better search
results than some baselines and a model without tuning.

2. Background

Our customer support software is a system developed to be a content resource to help users
throughout the usage of our platform. It contains several guides, tutorials and articles in
order to support our customers. Writing these articles is a primordial task to keep the
platform’s support information up-to-date. This application is integrated with a Content
Management System (CMS) to store and deliver the documents. In particular, we use
Contentful6 as CMS.

The document structure is composed of the following fields: (a) id: a unique
identifier for the document; (b) title: the document’s title; (c) locale: the language of
the content; (d) URL: the document’s URL; (e) text: the whole content of the document;
and (f) contentType: the category of the document. The values of contentType are: (1) an-
nouncement: feature release announcements; (2) Frequently Asked Questions: frequently
asked question about any feature in the platform; (3) Known Issue: known issues of the
platform; (4) Track Article: a document belonging to a set of articles with step-by-step
instructions; and (5) Tutorial: an article describing a feature or module of the platform.

Given that the system is used across many different countries, it is necessary to en-
sure that the support content is available in three different languages: Portuguese, Spanish
and English. We use Elasticsearch (ES) as our search engine, which indexes each docu-
ment on CMS in its respective index language. We provide, therefore, search in those 3
languages. We do not perform any stemming or stopword removal in the documents to
index them.

3. Proposed Solution

As before mentioned, in this work, we propose a solution to evaluate and rank docu-
ments from a customer support site in a principal way. Figure 1 depicts an overview of
its architecture. The Search Evaluator is responsible for evaluating the quality of search
algorithms based on the click log search from previous interactions with the search sys-
tem. This component is used by the Search Evaluation Report to provide analysis over
the ranking configurations. The Search Tuning module searches for the best ranking con-
figuration (ranking algorithm and weights). To retrieve the results, it queries the Search
API provided by ElastiscSearch, and to evaluate the ranking quality of each configuration,
uses the Search Evaluator. In the following, we provide further details of each component
of our solution.

5https://db-engines.com/en/ranking
6https://www.contentful.com/



Figure 1. ARTES’ System architecture.

3.1. Search Evaluator
To evaluate the search’s ranking, the Search Evaluator collects document relevance infor-
mation from the Click Search Log and uses it to calculate the ranking quality.

The interaction of the users with the search site is logged into the Click Search Log
system. In our solution, we use Google Analytics7 (GA) for this purpose. For each sub-
mitted query, GA provides the number of clicks on the documents inspected by the user
right after the query, which we call destination pages. We consider a successful search
when the user clicks on destination pages in the query’s resulting list, and an unsuccessful
search when she/he goes to other pages on the website. These two types of pages are
easy to differentiate in the logs since the query’s resulting pages have in their URL the
document id, whereas URL of pages from unsuccessful searches do not.

To measure the quality of the ranking, we consider the information obtained from
the successful searches. For that, we use the number of clicks on destination pages as
a relevance signal. Our main assumption is: the more a resulting page is clicked by the
users, the higher its relevance is. Since the number of clicks on destination pages varies
considerably across queries, we compute the relevance score of a destination page for a
given query q, a set of terms, by normalizing and discretizing its clicks according to the
formula:

rel(t) = int(
clicks(t)

maxClicks
∗ 4) (1)

where clicks(t) is the number of clicks on the destination page t, maxClicks is the
number of clicks of the most clicked destination page of q, and int is the function that
rounds down a number to the closest integer. The relevance score of documents ranges
from 0 (lowest relevance) to 4 (highest relevance).

For a given query q and the relevance values of its destination pages, we measure
the quality of the ranked results using Normalized Discounted Cumulative Gain (NDCG).
The NDCG is the normalization of the Discounted Cumulative Gain measure. The DCG
at a certain k is the sum of the relevance scores of the top-k documents in the search result:

DCG@k =
k∑

i=1

reli
log(i+ 1)

(2)

where i is the position of the rank and reli is the relevance score of the document at
this position. The highest value of DCG@k for q is called Ideal Discounted Cumulative

7http://www.google.com/analytics/



Gain at k (IDCG@k). The IDCG@k of q is calculated by sorting in descending order the
relevance scores of the destination pages of q, which in our solution we extract from the
user query log as previously mentioned. The NDCG@k is then calculated as:

NDCG@k =
DCG@k

IDCG@k
(3)

The NDCG measures, therefore, how similar the rank returned by a ranking algo-
rithm (DCG@k) is close to the ideal rank (IDCG@k). An NDCG@k equals to 1 repre-
sents a perfect ranking.
Implementation. We developed the Search Evaluator module in Python. It is composed
of two components: data processing and API. The data processing reads the user logs from
GA, converts the search queries to lowercase, removes special characters and punctuation,
and calculates for each destination page of a query its relevance score, as described in
Equation 1. This process creates the ground-truth data (GT), in which each query in the
GT has a list of destination pages with their respective score. This information is then
used to calculate the NDCG@k. The API, implemented in Flask8, contains the entry
point that, given the search results of a query, returns the NDCG at different levels of k.

3.2. Search Tuning
In this section, we describe the Search Tuning component responsible for selecting the
best configuration of ranking. Our ranking is computed by sorting in descending order
the matching score between a document d in the index, composed of fields, and a user
query q. The document fields used in the matching are: title, text, URL and contentType.
For the last one, we only consider whether the contentType of a document is a “tutorial” or
“trackArticle”, since these types are considered more relevant according to our business
rules. Our matching score s(q, d) is then:

s(q, d) =
∑

i∈{title,text,url}

si(q, d) ∗ wi +
∑

j∈{tutorial,trackArticle}

1j(d) ∗ wj (4)

where si(q, d) is the similarity score computed by a matching algorithm between the con-
tent of q and d for field i, wi is the weight of i, 1j(d) is the result of the indicator function
for d on the contentType value j (i.e., 1j(d) = 1 when the contenType of d is j, and 0
otherwise), and wj is the weight of j.

Instead of manually defining a similarity model for the field matching score
si(q, d) and the weights, we search for the parameters of s(q, d) that produces the best
overall ranking. In our context, we measure the quality of s(q, d) by calculating the
NDCG@k (Equation 3) of the ranking produced by s(q, d). A naı̈ve approach to find
the best values of the parameters of s(q, d) would be to perform a random or grid search
over the values’ space. This is though very costly due to the high number of possible
combinations. Instead, we perform our search tuning applying Bayesian optimization
(BO) [Shahriari et al. 2015]. Given an objective function f , BO samples f conditioned
on previous samples of f to build a surrogate function f ′ trying to optimize f by f ′, which
is less costly than f . In our context, f is NDCG@k(x), where x is a set of values of the
parameters of s(q, d). BO aims, hence, to find the maximum value of f given a defined
parameter search space. We chose the Tree-structured Parzen Estimator (TPE) as the BO
algorithm.

8https://flask.palletsprojects.com



K
Ranking Algorithm Best Weights 10 20

BM25 [3,2,3,5,1] 0.509 0.521
DFR [5,3,4,4,1] 0.501 0.514
DFI [3,2,3,4,1] 0.511 0.523
IB [4,4,4,3,1] 0.513 0.521
LM Dirichlet [5,1,5,2,1] 0.475 0.492
LM Jelinek-Mercer [3,3,3,5,1] 0.508 0.522
BM25 (all fields, no weights) - 0.475 0.488
Contentful - 0.180 0.211
Google - 0.197 0.195

Table 1. Results of the evaluated models. The order of weights is the following:
[title, text, url, tutorial, trackArticle] for the models that use weights.

Implementation. As Figure 1 shows, we implemented our Search API component us-
ing Elasticsearch. The approach to setting weights to the title, text and URL fields is
through multi-match query9, boosting individual fields with the caret (∧) notation. Fur-
thermore, to add weights when a document’s content type is “tutorial” or “trackArticle”,
we employ the function score query10. It allows the definition of functions that mod-
ify the score of documents retrieved by a query. In our case, we create functions to
check whether the contentType of the document is in the tutorial or trackArticle cate-
gory, setting its weight accordingly. These weights are added to the matching score, as
shown in Equation 4. To find the best values of the parameters (matching model and
weights) of s(q, d), we use the TPE implementation available on the Bayesian optimiza-
tion framework Optuna [Akiba et al. 2019]. To choose the matching model in order to
calculate si(q, d), the search tuning process evaluates six well-established information re-
trieval models [Baeza-Yates et al. 1999], available on Elasticsearch: BM25, Divergence
from randomness (DFR), Divergence from independence (DFI), Information based model
(IB), LM Dirichlet (LMD) and LM Jelinek Mercer (LMJM).

4. Experiments
Setup. The Search Evaluator generated the ground truth from click information between
01/04/2019 and 16/06/2020 from a GA log that has over 15 thousand entries. The set of
search terms is composed of 300 queries: the 100 most frequent distinct ones for each
of the three languages available in our system (English, Portuguese and Spanish). For
each one of these queries, we only consider destination pages with more than 1 click.
We use NDCG@10 and NDCG@20 to evaluate the ranking quality of all strategies, and
NDCG@10 for the weight optimization of the models, as described in Section 3.2. These
metrics were calculated using around 1400 documents for each language. The search
space for each one of the weights is the integers in the interval [1-5]. On average, the BO
algorithm executed a total of 637 combinations for each ranking algorithm. In addition to
these models, we evaluate the BM25 algorithm searching using the 5 fields without any
weights, and other two search engines: Google and Contentful (the engine used on our
CMS, as mentioned in Section 2).

Results. Table 1 shows the results of the evaluated models computed for all 300 queries.
It can be observed that our solution using weights, the first 6 lines, has outperformed
the other approaches. However, comparing the ranking algorithms using weights, the
NDCG values are very similar. To check whether their results regarding the distribution

9https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html
10https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html



of NDCG@10 for their queries have the same distribution (null hypothesis), we executed
the Friedman Test [Sprent and Smeeton 2016] with a significance level equals to 0.05.
In the first comparison, we assessed all six ranking configurations that use weights and
concluded that their distributions are different (p-value=0.001). Since the LM Dirichlet
model obtained the lowest NDCG@10 and NDCG@20 values among the six models, we
executed another Friedman Test removing it from the comparison. The resulting p-value
(0.243) accepts the null hypothesis, meaning that the distributions of the five remaining
models are similar. We also evaluate the impact of weight selection in the search quality.
For that, we executed a statistical test (Wilcoxon [Sprent and Smeeton 2016]) to compare
BM25 (best weights) with BM25 (all fields, no weights), with the alternative hypothesis
considering that the median of the results of the first model is greater than the second
one. The test result confirms that there is a statistical difference between the two config-
urations: p-value=7.735e-10. We can conclude from these numbers that our strategy of
assessing the ranking and adjusting it using a Bayesian optimization, in fact, improves
the quality of the search functionality over the documents on our customer support plat-
form. Analyzing the sets of best weights in Table 1, we observe that the values of the
weights depends on the algorithm, since each algorithm has a different set of weights.
The field trackArticle, however, is the only exception, having the lowest value in all six
algorithms. This is due to the low proportion of articles in this category in our article
collection: trackArticle corresponds to less than 10% of the articles, whereas tutorial to
more than 70%.
5. Conclusions
In this paper, we presented our solution that instead of informally or in an ad-hoc man-
ner evaluating and choosing the ranking algorithm, it uses a well-established metric to
assess the ranking quality and automatically selects the best ranking configuration using
a Bayesian optimization algorithm. In addition to show conceptually how our system
(ARTES) works and its integration with Elasticsearch, we also provide implementation
details about it. The experimental evaluation shows ARTES can provide, for the set of
most frequent queries, better ranking models than some search engines and a strategy
with no weight optimization. A potential improvement to ARTES would be to add other
information retrieval metrics such as mean average precision (MAP) and Precision@k to
the Search Evaluator model.
References
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-

generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD, pages 2623–2631.

Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern information retrieval, volume
463. ACM press New York.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-
parameter optimization. In NeurIPS, pages 2546–2554.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175.

Sprent, P. and Smeeton, N. C. (2016). Applied nonparametric statistical methods. CRC
press.


