
Industrial Paper: Large-scale Record Linkage of Web-based
Place Entities

Vinı́cius M. R. Cousseau1,2, Luciano Barbosa2

1In Loco, Recife – PE – Brazil

2Centro de Informática, Universidade Federal de Pernambuco, Recife – PE – Brazil

vinicius.cousseau@inloco.com.br, luciano@cin.ufpe.br

Abstract. Extracting data about entities from the Web has become common-
place in the industry and academia alike. Web-based entities, however, are in-
herently noisy and, as such, introduce several normalization issues which must
be attended to in order to maintain a clean database. Record linkage, which
refers to the detection of replicated datum from possibly multiple sources, is one
of the most critical of those issues. This paper presents a practical approach for
solving the record linkage problem in the places data domain at an industrial
scale, displaying both a model which reaches a normalized Gini coefficient of
0.92, and an architecture that supports large-scale processing.

1. Introduction
The creation and management of databases built upon web-based data is a process which
suffers from several issues pertaining to a noisy and unstructured nature. While the
amount of information covered by the web grows steadily, only 52% of its websites
display their data in some structured manner1. On top of that, one may also encounter
well-structured but ill-defined datum, which not only is harder to treat, but also lessens its
informational and commercial value.

One of the most prominent normalization issues that must be addressed in this
context is record linkage, which refers to the detection and deduplication of redundant
data in databases. This field of research has evolved considerably, since most of the
Web is currently open to user input and there is usually a plethora of websites displaying
information about the same entities but in different forms.

Our domain consists of data about places around the world, gathered from a fo-
cused web crawler. Each place record represents a real physical space with a given name,
location, and several other attributes which are further presented in this work. Places are
particularly complex entities, since they are tightly coupled with a location and several of
its fields are subjective. Moreover, having redundant places in our database could result
in catastrophic results for our company, due to resultant product malfunctions.

One common strategy for approaching the problem, mainly in the industry, is
the development of deterministic systems based on rule chaining [Berjawi 2017]. Albeit
quick to implement and effective, these systems are domain-dependant and do not scale
well, as the number of chained rules grows indefinitely. There are some techniques to
reduce temporal constraints, such as record blocking [Christen 2012].

1https://w3techs.com/technologies/overview/structured data/all



The work by [Dalvi et al. 2014] is the one that most closely resembles ours, since
they also investigate the record linkage problem in the places domain, proposing a dy-
namic programming technique based on the detection of core words for each place’s name
in order to match pairs. Significant gains should be expected when using machine learning
models for record linkage [Wilson 2011], but it is important to note that the record link-
age problem has often highly imbalanced class distributions, akin to an anomaly detection
task. Hence, any chosen statistical model and metrics must account for class imbalance.

On top of these issues, we also had to take into consideration the need for a re-
silient and scalable architecture. For reference, as of the writing of this paper, our database
was being queried approximately 700 million times on a daily basis, and it held informa-
tion about more than 28 million places globally. This greatly restricted available technique
choices for us, and led to some interesting trade-offs.

This paper then describes our experience in dealing with duplicated places in an
industrial scale. Its contribution is twofold: it unravels architecture choices and trade-offs
in dealing with on-line and off-line approaches to the record linkage problem in parallel,
and presents our algorithms and machine learning models applied to the task, alongside
insights learned about this problem and its domain.

2. Characteristics of a Place Database
The technical definition of a place entity is ambiguous and application-dependant. Thus,
we firstly present the definition for a place in our database:

Definition I. A place is a direct representation of a physical location in the
real world which has well-defined boundaries, a purpose, a considerable
size, and is a source of context.

Coffee shops, universities and shopping malls are some examples of places. The
most relevant place fields for the work herein described are ID (a unique textual identifier),
Name, Geo Location (expressed in latitude and longitude coordinates), Address, Phone,
Homepage, Labels (which are the places’ categories such as restaurant or store), and
Parentage (which is an ID of another place which encompasses the current one, if any).

This collection of fields, albeit small, is home to several issues which may be
encountered not only in our database but in any other web-based database in this domain.
The place’s Geo Location field, for instance, presents issues due to a common lack of
precision resulting from the geocoding - address to latitude and longitude translation -
strategies utilized by websites.

3. Proposed Method
In the places domain, the record linkage problem may be defined by Research Problem
(RP) I, which is a relaxed version of RPII:

Research Problem I Given a pair of place entities, how do we detect if
they represent the same real-world place?

Research Problem II Given a set of place entities, how do we detect if
they represent the same real-world place?



In order to translate a model which works on RPI to solve RPII, one must simply
represent each positive pair output as connected nodes in a graph, and negative outputs
as unconnected ones. The connected components of said graph will represent the repli-
cated data sets, thus fulfilling the requirements of RPII. The techniques described in this
section solve RPII by applying this incremental procedure.

Our first approach was deterministic and utilized the concept of a place’s name be-
ing usually defined by a set of core words and a set of background ones [Dalvi et al. 2014].
We name it WordRelevanceHeuristics or WRH for short. As we had to take both off-
line and on-line contexts into consideration during our development process, the relative
naivety of this approach allowed us to quickly deploy a working version to both fronts.

WRH derives the core word concept from the fact that those words are usually the
most unique ones in a name, and thus, rarer. We also restrict the detection to a single core
word. Translated to code, this means that each place’s core word is the one with the least
global term frequency value. These words, however, may simply be localized words,
such as street names, neighborhoods or local folklore, which are not good candidates
for core words. To account for that, our algorithm prunes localized words by applying
experimentally defined thresholds to TF-IDF values calculated only inside each place’s
Geohash2, instead of globally.

Afterwards, for each place pair, the core word of each of their members is com-
pared via exact string matching. Geographic distance, parentage and label similarity rules
are then taken into account to produce a final result, indicating whether or not a given
pair represents duplicated places. This approach is still very sensitive to typing errors and
acronyms, which are almost always detected as the core word due to their uniqueness. As
is the case with deterministic systems, it also suffers from being hard to maintain without
a good domain knowledge, which in turn is undesirable in an industrial setting.

During production usage, WRH’s recall was deemed too low, and we decided to
follow a second approach which leveraged the capabilities of supervised learning. We
opted for a Random Forest model, since it tends to excel at handling skewed data and
finding a good bias-variance trade-off without feature scaling. We name this model Pair-
wiseRandomForest or PRF, and are utilizing it in our current production environment.

The PRF model features are described at Table 1. These are all pairwise fea-
tures, i.e. for each possible place pair, each feature is computed by comparing attributes
from both of the places. As the reader may notice, we still make use of the place’s core
word, but this time only as a single feature in the model. We also include two Soft TF-
IDF [Moreau et al. 2008] comparisons since the Soft TF-IDF algorithm compares words
which surpass a secondary similarity threshold, thus being more resilient to typing errors,
different verbal tenses and acronyms. Finally, parentage and homepage comparisons are
included as one-hot encoded categorical features.

In conclusion, each place pair is represented as a row vector v ∈ R15, which is
then processed by the model. The random forest’s output and an experimentally defined
classification threshold α are utilized in tandem to generate the final binary classification
for each input datum (RPI), and the aforementioned connected components analysis is
applied to generate the replicated place clusters (RPII).

2http://geohash.org/



Table 1. PairwiseRandomForest ’s features and their descriptions
Feature Description

MostRelevantWordJaro Jaro Winkler similarity between core words
NameSoftTfIdf Soft TF-IDF between normalized names

AddressSoftTfIdf Soft TF-IDF between normalized street names
LabelsJaccard Jaccard similarity between label lists

Distance Distance in meters between two geo locations
HomepageMatches Exact homepage match

ParentageRelationship Exact match between an id and a parentage
SiblingRelationship Exact match between parentages

3.1. Pre-processing and Trade-offs

Given that our approaches attempt to solve RPI and then adapt the results to RPII,
generating possible place pairs is one of the key pre-processing steps in our pipeline. With
a database containing upwards of 28 million records, performing quadratic combinations
over the whole database would be too computationally and economically expensive, and
as such, we utilize distributed computing and opt for the implementation of blocking
techniques to reduce the number of potential pairs.

A labeled diagram for our final architecture utilizing the PRF model, including its
on-line version and translation from RPI to RPII, can be seen at Figure 1.

Figure 1. Diagram of our final architecture, including off-line and on-line ap-
proaches with labels. Map image made with http://geohash.gofreerange.com/.

Our blocking algorithm firstly subdivides the space into 6-character long Geo-
hashes, each having an area of approximately 744m2 and a diagonal distance of approx-
imately 1364m, as seen in step (1). Then, for each Geohash, all possible place pairs are
generated and filtered by comparing both place names with a Jaro Winkler string sim-
ilarity, using a coefficient that is low enough to preserve the class distribution between
duplicates and non-duplicates, and high enough to prune obvious non-duplicate pairs (2).
This threshold was experimentally defined as 0.7. Place pairs are then converted into pair-
wise features in a separate feature engineering step, and categorized using PRF (3). The



final off-line results are generated by the detection of connected components among the
positive pairwise outputs and fed back to our database (4).

Performing quadratic operations when blocking on each Geohash would still not
fulfill the needs of a real-time responsive service. Hence, in order to generate possible
pairs in an on-line environment for each new place, we first query one of our APIs to
find all nearby places in a 250m radius, limiting the query result to 150 places (5). The
generated pairs are then passed through our name similarity blocking algorithm and sent
to a dedicated API to respond to record linkage queries, using the trained model (6).

4. Experiments
The first step in our experiments was the definition of a silver standard over which we
could iterate. With manual and crowdsourced approaches to this dataset construction
having failed, we decided to utilize the same blocking technique described in the previous
section to generate possible pairs for our dataset. For each of these pairs, we then filtered
out all the ones without the Phone attribute, present in roughly 40% of the dataset entities,
and utilized a direct match of the phone digits to indicate whether or not the pair was
positive or negative. We then manually analyzed a few troublesome cases and fixed them.

This approach still preserved the estimated class distribution, and provided us
with a dataset containing 597452 place pairs, 572560 of those being negative samples: a
24 : 1 negative to positive ratio. It is important to note that we decided to run both of
our experiments for Brazilian places only, since different languages could imply different
feature importance values.

The dataset was then divided into training and test datasets using a stratified split
of 70% and 30%, respectively. Afterwards, we undersampled the training set with Tomek
links and then oversampled the positive samples with SMOTE. The PRF model was
trained on top of this training dataset, while WRH did not require any kind of train-
ing. The hyperparameters for PRF all follow the default values from scikit-learn
v0.20.3, apart from the maximum tree depth, which was manually optimized to 23. In
these experiments, α is manually set to 0.95.

Table 2 shows the results for the execution of the two strategies on top of the test
dataset. The balanced accuracy score metric takes the class imbalance issue into account,
preventing the majority of negative samples from biasing the results. We added precision
and recall as means of completeness, even though they are not good evaluation metrics
for an imbalanced scenario.

Table 2. Results on top of our test dataset, with α = 0.95

Metric WRH PRF
Balanced Accuracy Score 0.51 0.87

Fβ=0.5 (Positive) 0.21 0.42
Precision (Positive) 0.56 0.56

Recall (Positive) 0.06 0.22

The Fβ=0.5 score was chosen in spite of the F1 score to better reflect the increased
importance of false positives in our context, when compared to false negatives. Regard-
less, it is still highly affected by the class imbalance, i.e. due to the higher density of



negative samples, there will naturally be several more false negatives than false positives
as the size of the dataset grows.

We also computed the normalized Gini coefficient for the PRF model. This score
presents itself as one of the best ways to measure performance of classifiers in a highly
skewed dataset, by measuring the degree of inequality among the results. The PRF model
achieved a normalized Gini coefficient of 0.92, very close to the optimal value of 1.

By comparing both models, we clearly see the predicted effects of a much higher
recall, a 366% gain. The absent precision gain for the second model with the chosen α
value is a result of the precision-recall trade-off that we were willing to adhere to. By
adjusting α according to the model’s learning curve, however, we are able to achieve a
precision of 0.72, a 28% gain, with WRH’s recall value of 0.06.

Upon manual investigation, we discovered that rejecting address comparisons is
detrimental, since there are many seemingly replicated places with the same name near
each other that are actually two real separate locations from a chain store. Indeed, a
feature importance analysis by permutation shows that that the MostRelevantWordJaro,
NameSoftTfIdf, and AddressSoftTfIdf features are the most crucial ones, respectively.

Furthermore, to assess the scalability of our model, we recorded execution times
of our distributed algorithms, which run on a weekly basis on top of all our database
containing approximately 252Gb of data stored in the parquet format. We utilized 7 AWS
m4.xlarge instances, each having 16Gb of memory and 4vCPUs. The pipeline achieved
an average run time of 93 minutes to process the whole database, with the generation
of over 2 million potential pairs to be processed by our model. The classification and
clusterization steps were extremely fast, and always took less than a minute to process all
generated pairs in each experiment.

5. Conclusions

In this paper, we presented the evolution of an approach to detect replicated records in
an increasingly growing database of web-based place entities, with upwards of 28 mil-
lion records. These records are inherently noisy, and we had to deal with several issues
pertaining to this nature during the development of our methods.

As a result of our work, we were able to both fulfill the current company needs and
overcome the technical challenges in the area, making our architecture fully operational
in a production environment. We expect that this work should be of use to researchers
and engineers in the academia and industry, whether they are dealing directly with places
data or not. As future steps, we intend to dig deeper into more recent techniques, such as
the development of spatial embeddings for usage in deep neural network architectures.

References

Berjawi, B. (2017). Integration of Heterogeneous Data from Multiple Location-Based
Services Providers: a Use Case on Tourist Points of Interest. PhD thesis.

Christen, P. (2012). A survey of indexing techniques for scalable record linkage and
deduplication. IEEE Transactions on Knowledge and Data Engineering, 24(9):1537–
1555.



Dalvi, N., Olteanu, M., Raghavan, M., and Bohannon, P. (2014). Deduplicating a places
database. In Proceedings of the 23rd international conference on World wide web -
WWW 14. ACM Press.

Moreau, E., Yvon, F., and Cappé, O. (2008). Robust similarity measures for named enti-
ties matching. In Proceedings of the 22nd International Conference on Computational
Linguistics - COLING 08. Association for Computational Linguistics.

Wilson, D. R. (2011). Beyond probabilistic record linkage: Using neural networks and
complex features to improve genealogical record linkage. In The 2011 International
Joint Conference on Neural Networks. IEEE.


