
Extracting Records and Posts from Forum Pages
with Limited Supervision

Luciano Barbosa and Guilherme Ferreira

IBM Research – Brazil
Av. Pasteur, 138, Rio de Janeiro, Brazil
{lucianoa,guiferre}@br.ibm.com

Abstract. Internet forums are rich sources of human-generated content.
Many applications, such as opinion mining and question answering, can
greatly benefit from mining and exploring such useful content. An impor-
tant step towards making user content from forums more easily accessible
is to extract it from forum pages. We propose REPEX (REcord and Post
EXtractor), a two-step solution that uses limited supervision to achieve
this goal. Given a forum page, REPEX first extracts data records that
contain human-generated content and then, from these records, extracts
their user content. The record extraction assumes that (1) a record is
composed of an automatic-generated part, which we call record tem-
plate, and a human-generated part; and (2) the structure of record tem-
plates are usually consistent across records. Based on those, the record
extractor initially locates the subtree that contains all records in the fo-
rum page, using an information-theoretic measure, and then identifies the
template of the records in this subtree, modelling this as an outlier detec-
tion problem. Finally, starting from the templates, REPEX determines
the boundaries of the records. For the post extraction, REPEX applies
an information extraction approach that performs this task by identify-
ing the posts’ string boundaries. We have performed experiments over
more than 100 real forum websites, and the results show that REPEX
is highly effective, obtaining high values of precision and recall for both
tasks.

Keywords: Forum, Record extraction, Post extraction, Data mining.

1 Introduction

An internet forum is described on Wikipedia as an “online discussion site where
people can hold conversations in the form of posted messages”. These conver-
sations address many different subjects and topics (e.g. games, movies, travel,
computers, health etc), which makes their content very diverse. Web forums are
also very popular nowadays. To give some numbers, as of March 2015, a big
forum website – ConceptArt.org1 – had more than 375 thousand users and more

1 http://www.conceptart.org/

2 Luciano Barbosa and Guilherme Ferreira

Fig. 1. Example of 3 records in a thread page.

than 8 billion posts, another forum – Gaia Online2 – had about 26 million users
and 2 billion messages (source: The Biggest Boards3). This huge amount of di-
verse human-generated content is very helpful for a variety of applications such
as opinion mining [11], question answering [16] and forum search [12, 4].

To take advantage of such rich content, methods to collect and process fo-
rum data have been previously introduced [5, 15, 13, 1]. In this paper, we focus
on the particular problem of extracting human-generated content from conver-
sational pages of forums, also known as thread pages. Thread pages are com-
posed of data records composed by: a human-generated part (the user post); and
the automatic-generated (or template) part, that contains information such as
date/time of the post, the user who posted it and the title of the posts. Figure 1
presents an example of records and posts in a thread page.

2 http://www.gaiaonline.com/
3 http://www.thebiggestboards.com/

Extracting Records and Posts from Forum Pages with Limited Supervision 3

Fig. 2. Overview of REPEX’s pipeline: given a thread page, Record Subtree Detection
locates the subtree of records; Template Mining identifies the record template sub-
trees (in blue); and Record Boundary Identification determines the boundaries of each
record; finally, from the records, Post Extraction extracts the posts.

Many previous approaches have been proposed to deal with the problem of
web data extraction [2, 8, 13, 6, 20]. Our work is more related to [8, 13], since
we are interested in building a solution that is not specific for a particular lay-
out template (template-independent). We also want to perform this task with
limited supervision, i.e., without any training data, to avoid having to label a
large amount of data, which is a laborious and time-consuming task. The main
challenge of building such solution is that the structure of thread pages vary
significantly across forum sites. To deal with all this variability, we propose a
two-step solution (see Figure 2). Given a thread page, our method first extracts
data records that contain the user posts (Record Extraction), and then the posts
within these records (Post Extraction).

To perform record extraction, we exploit common features present in the
DOM tree of thread pages. More specifically, we make three assumptions: (1)
records are under the same parent node in the HTML DOM tree of thread pages;
(2) records contain an automatic-generated (or template) part, whose HTML
structure is consistent across records in the same thread page; and (3) record
templates contain common types across sites. Based on those assumptions, we
propose a data mining algorithm that uses limit supervision (no training) to
extract data records from thread pages: REPEX (REcord and Post EXtractor).
First, given a thread page, REPEX scans its DOM tree to identify the candidate
record templates by detecting nodes containing the following types: date and
time of the post, the post user and the post title. We implement simple heuristic-
based type detectors, which combined, provide a robust method for detecting
the record template. Next, REPEX locates the subtree S where all records are
located (Record Subtree Detection). For that, it assumes that S is balanced with
respect to the detected type nodes, and uses an information-theoretic measure
to calculate tree balance. Since not all candidate record templates within S
are in fact record templates, next, it identifies them using an outlier detection
strategy: candidates with very different tree structures are considered outliers
and then removed (Template Mining). Finally, REPEX identifies the boundaries
of the records in S, using a simple heuristic (Record Boundary Identification).
Regarding post extraction, we assume that the string boundaries of the posts
are similar across records and, based on that, we implement an information
extraction approach to extract them.

4 Luciano Barbosa and Guilherme Ferreira

Fig. 3. Example illustrating how Template Mining selects template subtrees in the
records subtree.

The remainder of the paper is organized as follows. Section 2 describes in
details the record extraction, and Section 3 describes the post extraction. In
Section 4, we detail the experimental evaluation. In Section 5 we present an
overview of existing related work in the area of web data extraction, and finally
in Section 6, we conclude the paper.

2 Record Extraction

The goal of the Record Extraction is to extract records from forum thread pages.
The Record Extraction is composed of 3 sub-tasks: Record Subtree Detection,
Template Mining and Record Boundary Identification. Record Subtree Detection
locates the subtree in the DOM tree where all records are located. Within this
subtree, Template Mining identifies the record templates and, based on the tem-
plates, Record Boundary Identification determines the boundaries of the records.
Figure 2 gives an overview of this process. In this section, we first describe the
type detectors used to identify the record templates and, subsequently, explain
each one of the components of the record extraction.

2.1 Type Detectors

Our first assumption regarding the problem of record extraction is that a record
contains a template-generated part, composed of basic types: the date and time
that the record was posted, its title and the user who posted it. Based on that, we
implemented 3 type detectors to identify them in a thread page: date-time, user
and record title. The date-time detector was built from regular expressions. For
that, we started from date and time examples of regular expressions available on
specialized websites4. Then, we improved the quality of these expressions using
a validation set, described in Section 4. The user detector uses simple heuristics

4 http://www.regxlib.com/
http://www.regular-expressions.info/

Extracting Records and Posts from Forum Pages with Limited Supervision 5

Algorithm 1 Record Subtree Detection

1: procedure TreeScan(node,D1...Dn)
2: for each d in D1...Dn do . Type detection loop
3: if TypeDetection(d, node) = TRUE then
4: IncrementTypesCount(node)
5: end if
6: end for
7: for each child node c of node do
8: TreeScan(c)
9: end for

10: if Balance(node) > τ then . Balance verification
11: {t1, ..., tn} = TemplateMining(node)
12: {r1, ..., rn} = ExtractRecords({t1, ..., tn})
13: end if
14: Return {r1, ..., rn} . Extracted records
15: end procedure

Algorithm 2 Template Mining

1: procedure TemplateMining(node)
2: {tc1, ..., tcz} = Children(node) . Template children
3: {s1, ..., sz} = Signatures({tc1, ..., tcz}) . Signatures of the children
4: {c1, ..., cl} = HAC({s1, ..., sz}, γ) . Clustering
5: {t1, ..., tn} = max({c1, ..., cl}) . Max size cluster
6: if Size(maxCluster) > 2 then
7: res = {t1, ..., tn}
8: end if
9: Return res

10: end procedure

to detect user information. It checks for URLs with words such as “‘member”’,
“profile” and “user”. The title detector assumes the record title is similar to the
title of the thread page. To measure that, we calculate the Jaccard similarity
between the title of the thread page and a given text. We consider a similarity
of 0.3 as a match. The text used as input to the detectors is segmented based
on the DOM tree structure: all the text within a leaf text node is considered as
a single sentence.

The great advantage of using a set of detectors, instead of a single one as
in [13], is that individual detectors can complement each other, and consequently
produce better results. For instance, the user detector might work in sites in
which the date-time detector might not. Another advantage is that building
a strong detector is a laborious task. Thus, instead of having a single strong
detector, one can build weak detectors, which need less effort to be implemented.
Our experimental evaluation confirms all these observations.

6 Luciano Barbosa and Guilherme Ferreira

2.2 Record Subtree Detection

The first step of Record Extraction is Record Subtree Detection. Given the
thread page’s DOM tree T , it identifies the subtree T ′ of T that contains all the
records. To achieve this goal, we assume that the nodes that contain the template
data types (date-time, user and title) are evenly distributed throughout the child
subtrees of T ′. Concretely, the algorithm works as follows (see Algorithm 1).
First, given T , the algorithm performs a complete scan of T , labelling nodes
that match the three basic types (lines 2-8). When a type detector matches a
node (line 3), the types’ counter in that node is incremented (line 4). Next, based
on these counts, for each subtree T ′ in T , it measures how balanced the child
subtrees CS of T ′ are with respect to the detected data type nodes. Only T ′s with
a balance value higher than a threshold are considered candidate subtrees for
the next steps (lines 10-12). The tree balance is measured using an information-
theoretic approach. More formally, consider p the probability of a child subtree
c of T ′ having detected data type nodes. We calculate p of c by dividing the
number of detected nodes in c over the total number of detected nodes in T ′. If
T ′ is balanced, the entropy of T ′ would be high, since p for all children would
have a similar value. To have a value between 0 and 1, we define Balance, which
is the normalized entropy of T ′:

Balance(T ′) = −
∑

c∈CS pclog(pc)

log(|CS|)
(1)

The Record Subtree Detection works as a lightweight filter and, as the ex-
perimental results in Section 4 suggest, can considerably prune the search space
for the next step in the pipeline, which is more expensive.

2.3 Template Mining

The goal of Template Mining is to identify the template part of the records. For
that, we assume that the data types are more concentrated in nodes belonging
to the template part of records than in other parts. Another assumption, similar
to [13], is that the tree structure of the templates of the records is similar to
each other. Based on these observations, we model this task as an outlier de-
tection problem, in which detected nodes outside the template part of records
are considered outliers. The algorithm works as follows (see Algorithm 2 and
Figure 3 for a concrete example). Initially, given the subtree T ′, identified in
Record Subtree Detection, the algorithm obtains the candidate templates CT ,
i.e., the children of T ′ that contains detected nodes (line 2). For each child c
of CT , it generates a signature composed of the HTML tags of the detected
nodes of c in the depth-first search order (line 3). This signature represents a
flat representation of the tree structure of c with respect to its detected nodes.
Next, these signatures are provided as input to the Hierarchical Aglomerative
Clustering (HAC) [14] (line 4). HAC starts with |CT | clusters (a single cluster
corresponds to a child signature), where |CT | is the number of elements of CT .
The two closest clusters are merged, resulting in |CC| − 1 clusters. Next, the

Extracting Records and Posts from Forum Pages with Limited Supervision 7

Algorithm 3 Record Boundary Identification

1: procedure ExtractRecords({t1, ..., tn})
2: sizeFreqs = [0, ..., 0] . Record size calculation
3: for each ti in {t1, ..., tn} do
4: sizeFreqs[ti − ti−1] = sizeFreqs[ti − ti−1] + 1
5: end for
6: recordSize = max(sizeFreqs)
7: leftShift = 0 . Left shift
8: for j = t1,k = t2 to j ≥ 0 and k ≥ 0 do
9: if EqualChildSign(j, k) = FALSE then

10: break
11: end if
12: leftShift = leftShift+ 1
13: j = j − 1
14: k = k − 1
15: end for
16: {r1, ..., rn} = ∅ . Segmentation of records
17: for each ti in {t1, ..., tn} do
18: start = ti − leftShift
19: end = start+ recordSize
20: ri = tstart, ..., tend

21: end for
22: Return {r1, ..., rn}
23: end procedure

two closest of the |CC| − 1 clusters are merged, and then the process contin-
ues until a stop condition. The output of this process is a set of clusters. The
algorithm considers that the record templates are in the cluster with the high-
est number of elements (line 5), and the remaining clusters are discarded. The
subtrees belonging to this cluster are returned, if the cluster has more than 2
elements (lines 6-8). We adopted as stop condition a similarity threshold, defined
experimentally. We use as similarity measure the levenshtein distance [10].

2.4 Record Boundary

Template Mining selects the template subtrees {t1, ..., tn} in T ′. These subtrees,
however, do not necessarily contain the whole record. There might be cases, for
instance, in which the human-generated content of a record is in a separated
subtree of T ′. In other cases, a record might be composed of multiple subtrees of
T ′. The task is, therefore, to define how we segment the children of T ′ in order to
extract the records (see Algorithm 3). First, the algorithm determines the record
size, i.e., how many consecutive child subtrees of T ′ compose a record. It does
so by calculating the distance (i.e., how many subtrees are) between each pair
of consecutive template subtrees (lines 2-5). It considers the distance with the
highest frequency as the record size (line 6). Then, it defines in which position
to the left of the template subtree the records start (lines 7-15). For that, it goes

8 Luciano Barbosa and Guilherme Ferreira

Algorithm 4 Post Extraction

1: procedure ExtractPosts({r1, ..., rn})
2: for each ri in {r1, ..., rn} do . Pre-processing
3: SegmentRecord(ri)
4: DetectPostText(ri)
5: end for
6: p, r = GetMaxRecordAndIndex({r1, ..., rn}) . Position p of record r chosen.
7: {si, ..., sn} = 0 . Begin indexes
8: for left = p− 1 to left ≥ 0 do
9: text = record[left]

10: indexes = MatchPositions({r1, ..., rn}, text)
11: if Size(indexes) = n then
12: {si, ..., sn} = indexes
13: break
14: else
15: {si, ..., sn} = 0
16: left = left− 1
17: end if
18: end for
19: {ei, ..., en} = 0 . End indexes
20: for right = p+ 1 to right ≥ 0 do
21: text = record[right]
22: indexes = MatchPositions({r1, ..., rn}, text)
23: if Size(indexes) = n then
24: {ei, ..., en} = indexes
25: break
26: else
27: {ei, ..., en} = 0
28: right = right+ 1
29: end if
30: end for
31: {p1, ..., pn} = ∅ . Segmentation of posts
32: for i = 1 to n do
33: pi = rstart[i], ..., tend[i]

34: end for
35: Return {p1, ..., pn}
36: end procedure

backward from the first two template subtrees (t1 and t2) until it finds subtrees
of T ′ with different child signatures (line 9). We define a child signature as the
string composed of the subtree HTML tag concatenated with the tags of its
children. Finally, the records are extracted from T ′ for each template subtree ti
(lines 16-21).

Extracting Records and Posts from Forum Pages with Limited Supervision 9

Fig. 4. Examples of texts from 3 records. Posts are highlighted.

3 Post Extraction

The Post Extraction is the final step of REPEX (see Figure 2). It extracts the
human-generated content from the data records. Instead of only relying on the
DOM tree structure to perform this task, as we did for record extraction, we
handle this task as an unstructured information extraction problem. For that, we
look at regularities in the text resulting from the records. Figure 4 shows exam-
ples of texts extracted from records. In these records, posts (in bold) are located
between a date string (e.g. “September 23rd, 2009”) and the string “‘Score”’.
This illustrates the main assumption of this algorithm: posts are delimited be-
tween common types/strings across records. The goal of Post Extraction is then
to identify these delimiters, and then extract all text between them. Concretely,
the algorithm works as follows (see Algorithm 4). First, it segments the record
sentences, using their structure on the DOM tree (line 3). All the text in the
same leaf node is considered a single sentence. Next, it runs a post-text detector
over the sentences (line 4). Similar to the other detectors presented in this paper,
the post-text detector uses simple rules to perform the detection. For instance,
it looks for characters such as “.” or “?” at the end of the phrase along with
personal pronouns as “I” or “you” or “it”. Here we assume that the text in posts
have a good chance of having personal references. From all the records with de-
tected texts, the algorithm selects the one that it has a high confidence of having
in fact a post text (lines 6): the record r with the largest detected text in phrase
position p in r. From p, the algorithm goes backwards until it finds a type/string
in r that matches in all others records (lines 7-18). The positions {s1, ..., sn} of
these matches in the records represent where the posts should start. Conversely,
the algorithm does the same procedure going forward from p (lines 19-30). The
positions {e1, ..., en} of these matches in the records represent where the posts
should end. To perform this match, it verifies whether the strings are from the
same data type (date-time, user and title) or if they share some prefix of size
greater than 1. Finally, it extracts the posts using {s1, ..., sn} and {e1, ..., en} as
delimiters (lines 31-34).

4 Experimental Evaluation

In this section, we present the experimental evaluation of our proposed ap-
proaches.

10 Luciano Barbosa and Guilherme Ferreira

4.1 Experimental Setup

Data. To perform the evaluation, we collected thread pages from 118 forum sites.
These websites are in a variety of different topics: games, cancer, psychology etc.
In addition, similar to [12], we also tried to select as many forums as possible
that use different softwares to publish their content. Out of the 118 sites, 72 were
used in the validation set and 46 in the test set. For each one of the websites, we
collected at most 5 thread pages, resulting in a set of 282 pages in the validation
set and 200 in the test set. Then, we manually extracted the text in the records
and posts from these pages, resulting in a total of 2,449 records and the same
number of posts. The performance of an approach is measured by comparing
its output with the gold data. Since there might be small differences between
the way records and posts are extracted, we consider a match when the cosine
similarity between the approach’s record and the gold data’s record is higher
than 0.6 for records and 0.3 for posts.

Record Extraction Approaches. We compare our record extraction approach
with the state-of-art for this task: MiBAT [13], which has been obtained superior
performance compared to previous approaches. MiBAT uses a date-time detec-
tor to identify the template part of the records, which they call anchor trees.
Then it aligns anchor trees using a tree matching algorithm [18]. The matched
anchor trees compose the templates of the records. For this matching, the au-
thors proposed similarity measures. We used Pivot and Siblings (PS) similarity,
since it showed the best results in their experiments. A similarity higher than a
given threshold is considered a match. We used the validation set to tune this
parameter. For further details, we refer the reader to [13]. We also used the val-
idation set to tune two parameters of our approach: the minimum entropy of a
parent node being considered relevant, and the similarity threshold in the HAC
algorithm’s stop condition.

Post Extraction Approaches. In addition to the post extraction approach
proposed in this paper, which will we call String-based Extraction for the re-
maining of this section, we implemented two other strategies:

– Text Detection: this approach scans the records, and only considers as posts
the text detected within the records by the Text Detector.

– Tree-based extraction: this algorithm works as follows. Given the subtree
that contains all the records T ′, first it uses the Text Detector to identify
text nodes in T ′. For the child subtrees CS of T ′ that contain text nodes,
it identifies the largest common subtree LCS of all CS. Since we assume
the post part of the record subtree might not have much regularity, for
each record, the algorithm considers the post part the tree structure of the
record that does not belong to the LCS. This method has not been proposed
previously in the literature. We implemented it to have a reasonable baseline
for post extraction.

Extracting Records and Posts from Forum Pages with Limited Supervision 11

Rec Prec F-Measure Prop. of Pages

RecExt 0.94 0.92 0.93 0.97

MiBAT 0.51 0.94 0.66 0.53

Table 1. Recall, precision, F-Measure and proportion of pages with at least 1 record
extracted by each approach.

Rec Prec F-Measure

User,Date-Time 0.86 0.92 0.89

Date-Time,Title 0.82 0.93 0.87

User,Title 0.76 0.96 0.85

User 0.67 0.96 0.79

Date-Time 0.68 0.93 0.79

Title 0.32 0.99 0.48

Table 2. Results of our approach using different combinations of type detectors.

4.2 Record Extraction Results

For each approach, we measured precision, recall and F-Measure over the records
in the test set. We also calculated the proportion of pages that had at least 1
record extracted by each approach. Table 1 presents the results. Our approach
obtained high values of recall (0.94), precision (0.92), F-measure (0.93), and also
extracted records from the vast majority of the pages (0.94). The numbers also
show that our approach outperforms the baseline in all measures.

We investigated possible causes for this difference in performance. For that,
we calculated the performance of MiBAT over only the 53% of the test set that
it was able to extract records. As expected, its results are much better: recall
= 0.92, precision = 0.97 and F-Measure = 0.95. For comparison, we also ran
our approach over the same 53% set. It obtained recall = 0.96, precision = 0.95
and F-Measure = 0.96. Our approach obtained higher recall (0.96 vs 0.92) but
lower precision (0.95 vs 0.97). Overall, our approach obtained a slightly better
F-Measure (0.96 vs 0.95).

We also evaluated the contribution of each detector for the final result. Ta-
ble 2 presents the recall, precision and F-Measure for all the possible combina-
tions of detectors. The combination of user and date-time detectors obtained the
best results as well as these two detectors considered individually. Although the
title detector individually obtained a poor result in terms of recall, combining
it with the other detectors, it boosted the overall performance of our approach.
These numbers clearly show that a combination of “weak” detectors that com-
plement each other, i.e., covering different sets of pages, leads to an effective
extractor.

Since MiBAT only uses a single date-time detector, we can compare its per-
formance in Table 1 with our approach using only this detector (Table 2) over the
entire test set. Our approach got a much higher recall than MiBAT (0.68 vs 0.51)

12 Luciano Barbosa and Guilherme Ferreira

Rec Prec F-Measure

String-based Extraction 0.86 0.93 0.89

Tree-based Extraction 0.82 0.92 0.87

Text Detection 0.57 0.56 0.56

Table 3. Results of post extraction.

and a slightly smaller precision (0.93 vs 0.94), as a result a higher F-Measure
(0.79 vs 0.66). The main reason for this advantage in recall is that our approach,
with only a single date-time detector, was able to detect date-time nodes from
a higher proportion of pages: 0.68 vs 0.51. From this, we can conclude that Mi-
BAT was not able to extract records even in pages that the date-time detector
worked.

In terms of performance, a major difference between our approach and Mi-
BAT is that the record region identification considerably prunes the search space,
i.e., only a small fraction of the subtrees in a page is considered for the remaining
steps in the pipeline. MiBAT, on the other hand, analyzes all the subtrees in the
page. To give some numbers, if one considers the total number of subtrees in all
pages in the test set (more than 500K subtrees), the Record Subtree Detection
only considered 1.1% of them as relevant, and then only this small fraction was
considered to the next steps.

4.3 Post Extraction Results

The results of the post extraction approaches are presented in Table 3. The
String-based approach obtained the highest values of recall (0.86), precision
(0.93) and F-Measure (0.89), followed by the Tree-based approach. The num-
bers show that our approach of post extraction is in fact effective for this task.
The lowest result was obtained by the approach that only uses the text detec-
tor to extract the posts. The main reason for this poor performance is that a
reasonable portion of the text in posts are not detected by the Text Detector
(low recall), and also much of the text detected by the Text Detector does not
belong to the posts (low precision). We can conclude from this that using the
text detection itself is not enough for this task, but it is very useful when used
with our proposed strategy. Regarding the recall of all approaches, an important
observation is that the post extraction is performed after the record extraction.
As a result, the upper bound of recall is the one obtained by our record extrac-
tion technique: 0.94. The precision of the record extraction also has influence
over the precision results for post extraction.

5 Related Work

There has been many different approaches in the literature regarding extracting
data records from the Web [3].

Extracting Records and Posts from Forum Pages with Limited Supervision 13

Liu et al. [8] proposed a fully-automated algorithm based on similar sub-tree
mining on the DOM tree of the Web page, called MDR. Although MDR obtains
good results, it suffers from a few limitations, such as only being able to extract
a consecutive record list and a poor similarity measure. Li et al. [7] propose an
approach using HTML tag paths and visual text features for record extraction.
They also assume records are continuous. In contrast to them, REPEX does not
make any assumption that records are consecutive. Zhang et al. [19] present a
novel algorithm to text extraction. Their approach differs from ours as it relies
heavily on visual properties of the webpage, which are harder to extract. Yang
et al. [17] use both page-level and site-level knowledge in Markov logic networks
to extract structured data from data records, such as post title, post author and
post time. As opposed to our approach, they heavily rely on labeled data, since
they are applying a statistical model.

Miao et al. [9] focused on extracting data records by capturing a list of objects
using a comparison between a pair of tag path occurrence patterns to estimate
how likely these two tag paths represent the same list of objects. Another pro-
posed approach for the problem of record extraction – MiBAT [13] – uses domain
constraints, such as post-date, to improve the extraction process and to design
better similarity measures. They used only a post-date constraint for this task,
implemented by a post-date detector. As opposed to them, we applied a broader
set of type detectors. The advantage of doing this is that multiple detectors can
complement each other and, as result, less effort needs to be done to build them.

6 Conclusions

In this paper, we present REPEX, a solution for extracting data records and
user posts from forum pages that does not use any training data to perform this
task. The data record extraction assumes that data records are within the same
subtree in the page’s DOM tree, and records have a template part that has a
similar tree structure. To locate the data record subtree, it uses an information-
theoretic approach. Next, within this subtree, it identifies the template part of
the records using a clustering algorithm. Finally, it determines the boundaries
of the records expanding from the templates. The extracted records are then
passed to the post extraction, that uses an unstructured information extraction
strategy to define the boundaries of posts, and extract them. Our solution has
been shown to be very effective over real forum data and outperformed the
baselines in different scenarios.

References

1. G. Cong, L. Wang, C.-Y. Lin, Y.-I. Song, and Y. Sun. Finding question-answer
pairs from online forums. In Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information retrieval, pages
467–474. ACM, 2008.

14 Luciano Barbosa and Guilherme Ferreira

2. D. W. Embley, Y. Jiang, and Y.-K. Ng. Record-boundary discovery in web docu-
ments. In ACM SIGMOD Record, volume 28, pages 467–478. ACM, 1999.

3. E. Ferrara, P. De Meo, G. Fiumara, and R. Baumgartner. Web data extraction,
applications and techniques: A survey. Knowledge-Based Systems, 70:301–323,
2014.

4. G. Ganu and A. Marian. One size does not fit all: Multi-granularity search of web
forums. In Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management, pages 9–18. ACM, 2013.

5. J. Jiang, X. Song, N. Yu, and C.-Y. Lin. Focus: learning to crawl web forums.
Knowledge and Data Engineering, IEEE Transactions on, 25(6):1293–1306, 2013.

6. K. Lerman, C. Knoblock, and S. Minton. Automatic data extraction from lists and
tables in web sources. In IJCAI-2001 Workshop on Adaptive Text Extraction and
Mining, volume 98, 2001.

7. S. Li, L. Tang, J. Hu, and Z. Chen. Automatic data extraction from web discussion
forums. In Frontier of Computer Science and Technology, 2009. FCST’09. Fourth
International Conference on, pages 219–225. IEEE, 2009.

8. B. Liu, R. Grossman, and Y. Zhai. Mining data records in web pages. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 601–606. ACM, 2003.

9. G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser. Extracting
data records from the web using tag path clustering. In Proceedings of the 18th
international conference on World wide web, pages 981–990. ACM, 2009.

10. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

11. B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and
trends in information retrieval, 2(1-2):1–135, 2008.

12. J. Seo, W. B. Croft, and D. A. Smith. Online community search using thread struc-
ture. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, pages 1907–1910. ACM, 2009.

13. X. Song, J. Liu, Y. Cao, C.-Y. Lin, and H.-W. Hon. Automatic extraction of web
data records containing user-generated content. In Proceedings of the 19th ACM
international conference on Information and knowledge management, pages 39–48.
ACM, 2010.

14. P.-N. Tan, M. Steinbach, V. Kumar, et al. Introduction to data mining, volume 1.
Pearson Addison Wesley Boston, 2006.

15. H. Wang, C. Wang, C. Zhai, and J. Han. Learning online discussion structures by
conditional random fields. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 435–444.
ACM, 2011.

16. B. Webber and N. Webb. Question answering. The handbook of computational
linguistics and natural language processing, pages 630–654, 2010.

17. J.-M. Yang, R. Cai, Y. Wang, J. Zhu, L. Zhang, and W.-Y. Ma. Incorporating
site-level knowledge to extract structured data from web forums. In Proceedings of
the 18th international conference on World wide web, pages 181–190. ACM, 2009.

18. W. Yang. Identifying syntactic differences between two programs. Software: Prac-
tice and Experience, 21(7):739–755, 1991.

19. Q. Zhang, Y. Shi, X. Huang, and L. Wu. Template-independent wrapper for web
forums. In Proceedings of the 32nd international ACM SIGIR conference on Re-
search and development in information retrieval, pages 794–795. ACM, 2009.

Extracting Records and Posts from Forum Pages with Limited Supervision 15

20. J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma. Simultaneous record detection
and attribute labeling in web data extraction. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
494–503. ACM, 2006.

